ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model for the Global Quantum Efficiency for a TPB-based Wavelength-Shifting System used with Photomultiplier Tubes in Liquid Argon in MicroBooNE

122   0   0.0 ( 0 )
 نشر من قبل Stephen Pate
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons ($N_{rm PE}$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $N_{rm PE}$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $0.0055pm0.0009$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.



قيم البحث

اقرأ أيضاً

The model R5912-20MOD photomultiplier tube(PMT) is made for cryogenic application by Hamamatsu. In this paper, we report on the measurement of relative quantum efficiency (QE) of this model PMT at liquid argon(LAr) temperature. Furthermore, a special ly designed setup and relevant test method are introduced. The relative QE is measured in visible wavelengths with the PMT emerged in high purity nitrogen atmosphere. The results show that the change of QE at LAr temperature is within about 5% compared with room temperature around 420 nm. However, the QE increases about 10% in the shorter wavelength range and decreases significantly after 550 nm.
Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of cosmic data collected with the MicroBooNE detector, mixed with simulated neutrino scattering events, a set of event selection criteria is developed that produces an event sample with minimal contribution from CR background. Depending on the selection criteria used a purity between 50% and 80% can be achieved with a signal selection efficiency between 50% and 25%, with higher purity coming at the expense of lower efficiency. While using a specific dataset from the MicroBooNE detector and selection criteria values optimized for CCQE-like events, the concepts presented here are generic and can be adapted for various studies of exclusive { u}{mu} interactions in LArTPCs.
147 - C.S. Chiu , C. Ignarra , L. Bugel 2012
The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. In this paper, we investigate the degradation of a chemical TPB coating in a laboratory or factory environment to assess the viability of long-term TPB film storage prior to its initial installation in an LArTPC. We present evidence for severe degradation due to common fluorescent lights and ambient sunlight in laboratories, with potential losses at the 40% level in the first day and eventual losses at the 80% level after a month of exposure. We determine the degradation is due to wavelengths in the UV spectrum, and we demonstrate mitigating methods for retrofitting lab and factory environments.
359 - D.E. Fields , R. Gibbons , M. Gold 2020
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition of a small quantity of xenon (doping at 10-1000 ppm) has been of particular interest. While the pathway for energy transfer between argon and xenon excimers is well known, the time-dependence of the process has not been fully studied in the context of a physics-based model. In this paper we present a model of the energy transfer process together with a fit to xenon-doped argon data. We have measured the diffusion limited rate constant as a function of xenon dopant. We find that the time dependence of the energy transfer is consistent with diffusion-limited reactions. Additionally, we find that commercially obtained argon can have a small xenon component (4 ppm). Our result will facilitate the use of xenon-doped liquid argon in future experiments.
Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا