ﻻ يوجد ملخص باللغة العربية
By considering analytical expressions for the self-energies of intervalley and intravalley phonons in graphene, we describe the behavior of D, 2D, and D$$ Raman bands with changes in doping ($mu$) and light excitation energy ($E_L$). Comparing the self-energy with the observed $mu$ dependence of the 2D bandwidth, we estimate the wavevector $q$ of the constituent intervalley phonon at $hbar vqsimeq E_L/1.6$ ($v$ is electrons Fermi velocity) and conclude that the self-energy makes a major contribution (60%) to the dispersive behavior of the D and 2D bands. The estimation of $q$ is based on an image of shifted Dirac cones in which the resonance decay of a phonon satisfying $q > omega/v$ ($omega$ is the phonon frequency) into an electron-hole pair is suppressed when $mu < (vq-omega)/2$. We highlight the fact that the decay of an intervalley (and intravalley longitudinal optical) phonon with $q=omega/v$ is strongly suppressed by electron-phonon coupling at an arbitrary $mu$. This feature is in contrast to the divergent behavior of an intravalley transverse optical phonon, which bears a close similarity to the polarization function relevant to plasmons.
We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states (EES) t
By means of first-principles calculations and modeling analysis, we have predicted that the traditional 2D-graphene hosts the topological phononic Weyl-like points (PWs) and phononic nodal line (PNL) in its phonon spectrum. The phonon dispersion of g
$require{mediawiki-texvc}$ A theoretical study is presented on the in-plane conductance of graphene that is partially sandwiched by Ni(111) slabs with a finite size and atom-scale width of $approx12.08 AA$. In the sandwiched part, the gapped Dirac co
The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface
We study the nuclear magnetic relaxation rate and Knight shift in the presence of the orbital and quadrupole interactions for three-dimensional Dirac electron systems (e.g., bismuth-antimony alloys). By using recent results of the dynamic magnetic su