ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact real-time dynamics of the quantum Rabi model

108   0   0.0 ( 0 )
 نشر من قبل Marcus Kollar
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the analytical solution of the quantum Rabi model to obtain absolutely convergent series expressions of the exact eigenstates and their scalar products with Fock states. This enables us to calculate the numerically exact time evolution of <sigma_x(t)> and <sigma_z(t)> for all regimes of the coupling strength, without truncation of the Hilbert space. We find a qualitatively different behavior of both observables which can be related to their representations in the invariant parity subspaces.



قيم البحث

اقرأ أيضاً

Starting with the Gaudin-like Bethe ansatz equations associated with the quasi-exactly solved (QES) exceptional points of the asymmetric quantum Rabi model (AQRM) a spectral equivalence is established with QES hyperbolic Schrodinger potentials on the line. This leads to particular QES Poschl-Teller potentials. The complete spectral equivalence is then established between the AQRM and generalised Poschl-Teller potentials. This result extends a previous mapping between the symmetric quantum Rabi model and a QES Poschl-Teller potential. The complete spectral equivalence between the two systems suggests that the physics of the generalised Poschl-Teller potentials may also be explored in experimental realisations of the quantum Rabi model.
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th e $O(n)$-model in the limit $ntoinfty$. The stationary state of the quantum dynamics is shown to be a non-equilibrium state. The quantum spherical and the quantum $O(n)$-model for $ntoinfty$ are in the same dynamical universality class. The long-time behaviour of single-time and two-time correlation and response functions is analysed and the universal exponents which characterise quantum coarsening and quantum ageing are derived. The importance of the non-Markovian long-time memory of the quantum noise is elucidated by comparing it with an effective Markovian noise having the same scaling behaviour and with the case of non-equilibrium classical dynamics.
Master equations are a useful tool to describe the evolution of open quantum systems. In order to characterize the mathematical features and the physical origin of the dynamics, it is often useful to consider different kinds of master equations for t he same system. Here, we derive an exact connection between the time-local and the integro-differential descriptions, focusing on the class of commutative dynamics. The use of the damping-basis formalism allows us to devise a general procedure to go from one master equation to the other and vice-versa, by working with functions of time and their Laplace transforms only. We further analyze the Lindbladian form of the time-local and the integro-differential master equations, where we account for the appearance of different sets of Lindbladian operators. In addition, we investigate a Redfield-like approximation, that transforms the exact integro-differential equation into a time-local one by means of a coarse graining in time. Besides relating the structure of the resulting master equation to those associated with the exact dynamics, we study the effects of the approximation on Markovianity. In particular, we show that, against expectation, the coarse graining in time can possibly introduce memory effects, leading to a violation of a divisibility property of the dynamics.
Based on the assumption that time evolves only in one direction and mechanical systems can be described by Lagrangeans, a dynamical C*-algebra is presented for non-relativistic particles at atomic scales. Without presupposing any quantization scheme, this algebra is inherently non-commutative and comprises a large set of dynamics. In contrast to other approaches, the generating elements of the algebra are not interpreted as observables, but as operations on the underlying system; they describe the impact of temporary perturbations caused by the surroundings. In accordance with the doctrine of Nils Bohr, the operations carry individual names of classical significance. Without stipulating from the outset their `quantization, their concrete implementation in the quantum world emerges from the inherent structure of the algebra. In particular, the Heisenberg commutation relations for position and velocity measurements are derived from it. Interacting systems can be described within the algebraic setting by a rigorous version of the interaction picture. It is shown that Hilbert space representations of the algebra lead to the conventional formalism of quantum mechanics, where operations on states are described by time-ordered exponentials of interaction potentials. It is also discussed how the familiar statistical interpretation of quantum mechanics can be recovered from operations.
The space of density matrices is embedded in a Euclidean space to deduce the dynamical equation satisfied by the state of an open quantum system. The Euclidean norm is used to obtain an explicit expression for the speed of the evolution of the state. The unitary contribution to the evolution speed is given by the modified skew information of the Hamiltonian, while the radial component of the evolution speed, connected to the rate at which the purity of the state changes, is shown to be determined by the modified skew information of the Lindblad operators. An open-system analogue of the quantum navigation problem is posed, and a perturbative analysis is presented to identify the amount of change on the speed. Properties of the evolution speed are examined further through example systems, showing that the evolution speed need not be a decreasing function of time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا