ﻻ يوجد ملخص باللغة العربية
Master equations are a useful tool to describe the evolution of open quantum systems. In order to characterize the mathematical features and the physical origin of the dynamics, it is often useful to consider different kinds of master equations for the same system. Here, we derive an exact connection between the time-local and the integro-differential descriptions, focusing on the class of commutative dynamics. The use of the damping-basis formalism allows us to devise a general procedure to go from one master equation to the other and vice-versa, by working with functions of time and their Laplace transforms only. We further analyze the Lindbladian form of the time-local and the integro-differential master equations, where we account for the appearance of different sets of Lindbladian operators. In addition, we investigate a Redfield-like approximation, that transforms the exact integro-differential equation into a time-local one by means of a coarse graining in time. Besides relating the structure of the resulting master equation to those associated with the exact dynamics, we study the effects of the approximation on Markovianity. In particular, we show that, against expectation, the coarse graining in time can possibly introduce memory effects, leading to a violation of a divisibility property of the dynamics.
We construct a large class of completely positive and trace preserving non-Markovian dynamical maps for an open quantum system. These maps arise from a piecewise dynamics characterized by a continuous time evolution interrupted by jumps, randomly dis
We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to $q$-d
Local master equations are a widespread tool to model open quantum systems, especially in the context of many-body systems. These equations, however, are believed to lead to thermodynamic anomalies and violation of the laws of thermodynamics. In cont
The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases ver
Non-Markovian local in time master equations give a relatively simple way to describe the dynamics of open quantum systems with memory effects. Despite their simple form, there are still many misunderstandings related to the physical applicability an