ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse freezing in the Ghatak-Sherrington model with a random field

93   0   0.0 ( 0 )
 نشر من قبل Matheus Lazo Lazo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present work studies the Ghatak-Sherrington (GS) model in the presence of a magnetic random field (RF). Previous results obtained from GS model without RF suggest that disorder and frustration are the key ingredients to produce spontaneous inverse freezing (IF). However, in this model, the effects of disorder and frustration always appear combined. In that sense, the introduction of RF allows us to study the IF under the effects of a disorder which is not a source of frustration. The problem is solved within the one step replica symmetry approximation. The results show that the first order transition between the spin glass and the paramagnetic phases, which is related to the IF for a certain range of crystal field $D$, is gradually suppressed when the RF is increased.



قيم البحث

اقرأ أيضاً

157 - Do-Hyun Kim 2014
We propose an expanded spin-glass model, called the quantum Ghatak-Sherrington model, which considers spin-1 quantum spin operators in a crystal field and in a transverse field. The analytic solutions and phase diagrams of this model are obtained by using the one-step replica symmetry-breaking ansatz under the static approximation. Our results represent the splitting within one spin-glass (SG) phase depending on the values of crystal and transverse fields. The two separated SG phases, characterized by a density of filled states, show certain differences in their shapes and phase boundaries. Such SG splitting becomes more distinctive when the degeneracy of the empty states of spins is larger than one of their filled states.
We derive the Thouless-Anderson-Palmer (TAP) equations for the Ghatak and Sherrington model. Our derivation, based on the cavity method, holds at high temperature and at all values of the crystal field. It confirms the prediction of Yokota.
The behavior of the nonlinear susceptibility $chi_3$ and its relation to the spin-glass transition temperature $T_f$, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through th e replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue $lambda_{rm AT}$ (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature $T_f$ can be traced by a divergence in the spin-glass susceptibility $chi_{rm SG}$, which presents a term inversely proportional to the replicon $lambda_{rm AT}$. As a result of a relation between $chi_{rm SG}$ and $chi_3$, the latter also presents a divergence at $T_f$, which comes as a direct consequence of $lambda_{rm AT}=0$ at $T_f$. However, our results show that, in the presence of random fields, $chi_3$ presents a rounded maximum at a temperature $T^{*}$, which does not coincide with the spin-glass transition temperature $T_f$ (i.e., $T^* > T_f$ for a given applied random field). Thus, the maximum value of $chi_3$ at $T^*$ reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that $chi_3$ still maintains a dependence on the replicon $lambda_{rm AT}$, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHo$_x$Y$_{1-x}$F$_4$ compound.
173 - Guilhem Semerjian 2007
The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.
170 - A. P. Young 2017
We study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e. the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodyna mic limit. We find that the replica symmetric (RS) solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at $T = 0$. If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e. magnetic field).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا