ترغب بنشر مسار تعليمي؟ اضغط هنا

On the freezing of variables in random constraint satisfaction problems

159   0   0.0 ( 0 )
 نشر من قبل Guilhem Semerjian
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guilhem Semerjian




اسأل ChatGPT حول البحث

The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.



قيم البحث

اقرأ أيضاً

We introduce and study the random locked constraint satisfaction problems. When increasing the density of constraints, they display a broad clustered phase in which the space of solutions is divided into many isolated points. While the phase diagram can be found easily, these problems, in their clustered phase, are extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. We thus propose new benchmarks of really hard optimization problems and provide insight into the origin of their typical hardness.
We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We loc ate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.
We study the phase diagram and the algorithmic hardness of the random `locked constraint satisfaction problems, and compare them to the commonly studied non-locked problems like satisfiability of boolean formulas or graph coloring. The special proper ty of the locked problems is that clusters of solutions are isolated points. This simplifies significantly the determination of the phase diagram, which makes the locked problems particularly appealing from the mathematical point of view. On the other hand we show empirically that the clustered phase of these problems is extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. Our results suggest that the easy/hard transition (for currently known algorithms) in the locked problems coincides with the clustering transition. These should thus be regarded as new benchmarks of really hard constraint satisfaction problems.
131 - Lenka Zdeborova 2008
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named locked constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.
The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا