ﻻ يوجد ملخص باللغة العربية
The composition of ultra-high energy cosmic rays is an important issue in astroparticle physics research, and additional experimental results are required for further progress. Here we investigate what can be learned from the statistical correlation factor r between the depth of shower maximum and the muon shower size, when these observables are measured simultaneously for a set of air showers. The correlation factor r contains the lowest-order moment of a two-dimensional distribution taking both observables into account, and it is independent of systematic uncertainties of the absolute scales of the two observables. We find that, assuming realistic measurement uncertainties, the value of r can provide a measure of the spread of masses in the primary beam. Particularly, one can differentiate between a well-mixed composition (i.e., a beam that contains large fractions of both light and heavy primaries) and a relatively pure composition (i.e., a beam that contains species all of a similar mass). The number of events required for a statistically significant differentiation is ~ 200. This differentiation, though diluted, is maintained to a significant extent in the presence of uncertainties in the phenomenology of high energy hadronic interactions. Testing whether the beam is pure or well-mixed is well motivated by recent measurements of the depth of shower maximum.
The mass composition of ultra-high energy cosmic rays can be studied from the distributions of the depth of shower maximum and/or the muon shower size. Here, we study the dependence of the mean muon shower size on the depth of shower maximum in detai
We present an updated cosmic-ray mass composition analysis in the energy range $10^{16.8}$ to $10^{18.3}$ eV from 334 air showers measured with the LOFAR radio telescope, and selected for minimal bias. In this energy range, the origin of cosmic rays
We observe a correlation between the slope of radio lateral distributions, and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer co-loca
Studies of the composition of the highest energy cosmic rays with the Pierre Auger Observatory, including examination of hadronic physics effects on the structure of extensive air showers. Submissions to the 31st ICRC, Lodz, Poland (July 2009).
We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the South Pole. IceTop, an integral part of