ترغب بنشر مسار تعليمي؟ اضغط هنا

Barium abundance in red giants of NGC 6752. Non-local thermodynamic equilibrium and three-dimensional effects

311   0   0.0 ( 0 )
 نشر من قبل Vidas Dobrovolskas
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Dobrovolskas




اسأل ChatGPT حول البحث

(Abridged) Aims: We study the effects related to departures from non-local thermodynamic equilibrium (NLTE) and homogeneity in the atmospheres of red giant stars in Galactic globular cluster NGC 6752, to assess their influence on the formation of Ba II lines. Methods: One-dimensional (1D) local thermodynamic equilibrium (LTE) and 1D NLTE barium abundances were derived using classical 1D ATLAS stellar model atmospheres. The three-dimensional (3D) LTE abundances were obtained for 8 red giants on the lower RGB, by adjusting their 1D LTE abundances using 3D-1D abundance corrections, i.e., the differences between the abundances obtained from the same spectral line using the 3D hydrodynamical (CO5BOLD) and classical 1D (LHD) stellar model atmospheres. Results: The mean 1D barium-to-iron abundance ratios derived for 20 giants are <[Ba/Fe]>_{1D NLTE} = 0.05 pm0.06 (stat.) pm0.08 (sys.). The 3D-1D abundance correction obtained for 8 giants is small (~+0.05 dex), thus leads to only minor adjustment when applied to the mean 1D NLTE barium-to-iron abundance ratio for the 20 giants, <[Ba/Fe]>_{3D+NLTE} = 0.10 pm0.06(stat.) pm0.10(sys.). The intrinsic abundance spread between the individual cluster stars is small and can be explained in terms of uncertainties in the abundance determinations. Conclusions: Deviations from LTE play an important role in the formation of barium lines in the atmospheres of red giants studied here. The role of 3D hydrodynamical effects should not be dismissed either, even if the obtained 3D-1D abundance corrections are small. This result is a consequence of subtle fine-tuning of individual contributions from horizontal temperature fluctuations and differences between the average temperature profiles in the 3D and 1D model atmospheres: owing to the comparable size and opposite sign, their contributions nearly cancel each other.



قيم البحث

اقرأ أيضاً

156 - Eugenio Carretta 2012
We present aluminium, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among gia nts in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stromgren photometry along the red giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.
317 - Gajendra Pandey 2017
Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were o btained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He I and He II line profiles, ionization equilibrium of ion pairs such as C II/C III and N II/N III. The various indicators provide a consistent set of atmospheric parameters: $T_{rm eff}$=25000$pm$300K, $log g$ = 3.10$pm$0.12(cgs), and $xi=13pm2 {rm km,s^{-1}}$ are provided for V652 Her, and $T_{rm eff}$=22000$pm$600K, $log g$ = 3.45$pm$0.15 (cgs), and $xi=10 {rm km,s^{-1}}$ are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses - LTE atmospheres and a LTE line analysis - with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang & Jeffery (2012) who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941 which appears to have evolved from metal-poor stars a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.
The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor stars and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522,have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study is to re-analyse the NGC 6522 stars previously reported using new high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of ion{Fe}{I} and ion{Fe}{II}. Our analysis confirms a metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35,and 0.05 < [Ba/Fe] < +0.55.
140 - Clea Sunny 2020
Dark matter (DM) which constitutes five-sixths of all matter is hypothesised to be a weakly interacting non-baryonic particle, created in the early stages of cosmic evolution. It can affect various cosmic structures in the Universe via gravitational interactions. The effect of DM in main sequence stars and stellar remnants like neutron stars and white dwarfs has already been studied. Red giant phase is a late stage of the evolution of stars. In this work, we study, low-mass red giants stars with admixture of DM and how this can effectively change the intrinsic properties of red giants such as their luminosities, temperatures and lifetimes.
We have observed high-dispersion echelle spectra of red giant members in the five open clusters NGC 1342, NGC 1662, NGC 1912, NGC 2354 and NGC 2447 and determined their radial velocities and chemical compositions. These are the first chemical abundan ce measurements for all but NGC 2447. We combined our clusters from this and previous papers with a sample drawn from the literature for which we remeasured the chemical abundances to establish a common abundance scale. With this homogeneous sample of open clusters, we study the relative elemental abundances of stars in open clusters in comparison with field stars as a function of age and metallicity. We find a range of mild enrichment of heavy (Ba-Eu) elements in young open cluster giants over field stars of the same metallicity. Our analysis succinct that the youngest stellar generations in cluster might be under-represented by the solar neighbourhood field stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا