ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical tagging of three distinct populations of red giants in the globular cluster NGC 6752

168   0   0.0 ( 0 )
 نشر من قبل Angela Bragaglia
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eugenio Carretta




اسأل ChatGPT حول البحث

We present aluminium, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among giants in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stromgren photometry along the red giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.



قيم البحث

اقرأ أيضاً

Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinctio n in this region has prevented extensive research. In this work, we use the high resolution near-infrared (NIR) spectroscopic data from APOGEE to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify ten red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of $-0.14pm5.47$ km s$^{-1}$, and a mean [Fe/H] of $-0.15pm 0.05$. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar Si, Ca, and iron-peak element abundances. Therefore, we infer that the CNO, NeNa, and MgAl cycles have been activated, but the MgAl cycle is too weak to show its effect on Mg. Type Ia and Type II supernovae do not seem to have significantly polluted the second generation stars. Comparing with other GC studies, NGC 6553 shows similar chemical variations as other relatively metal-rich GCs. We also confront current GC formation theories with our results, and suggest possible avenues for improvement in the models.
NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]$sim$$-$1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can g ive hints on the earliest chemical enrichment in the central Galaxy. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of FeI and FeII lines from UVES spectra. The abundances were obtained with spectrum synthesis. The present analysis combined with previous UVES results gives a mean radial velocity of vrhel = -15.62+-7.7 km.s-1 and a metallicity of [Fe/H] = -1.05+-0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=+0.28, [Si/Fe]=+0.19, and [Ca/Fe]=+0.13, together with the iron-peak element [Ti/Fe]=+0.13, and the r-process element [Eu/Fe]=+0.40.The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances.
We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, $alpha$, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N,O,Na) and s-element content. On the other hand, they do not show any significant difference in their $alpha$ and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origin of the two RGBs and the two subgiant branches of the cluster is related to a different content of either $alpha$ (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by SNeII.
500 - Eugenio Carretta 2014
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic s pectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
262 - V. Kravtsov 2011
We investigate the new and still poorly studied matter of so-called multiple stellar populations (MSPs) in Galactic globular clusters (GGCs). Studying MSPs and their accumulated data can shed more light on the formation and evolution of GGCs and othe r closely related fundamental problems. We focus on the strong relation between the radial distribution of evolutionary homogeneous stars and their U-based photometric characteristics in the nearby GGC NGC 6752 and compare this with a similar relation we found in NGC 3201 and NGC 1261. We use our new multi-color photometry in a fairly wide field of NGC 6752, with particular emphasis on the U band and our recent and already published photometry made in NGC 3201 and NGC 1261. We found and report here for the first time a strong difference in the radial distribution between the sub-populations of red giant branch (RGB) stars that are bluer and redder in color U-B, as well as between sub-giant branch (SGB) stars brighter and fainter in the U-magnitude in NGC 6752. Moreover, the fainter SGB and redder RGB stars are similarly much more centrally concentrated than their respective brighter and bluer counterparts. Virtually the same applies to NGC 3201. We find evidence in NGC 6752 as in NGC 3201 that a dramatic change in the proportion of the two sub-populations of SGB and RGB stars occurs at a radial distance close to the half-mass radius, R_h, of the cluster. These results are the first detections of the radial trend of the particular photometric properties of stellar populations in GGCs. They imply a radial dependence of the main characteristics of the stellar populations in these GGCs, primarily of the abundance, and (indirectly) presumably of the kinematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا