ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2

251   0   0.0 ( 0 )
 نشر من قبل Lan Wang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental evidence of surface dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2. The resistivity measurements show dramatic difference between the nanoflake devices and bulk single crystal. The resistivity and Hall analysis based on a two-channel model indicates that ~99% surface transport contribution can be realized in 200 nm thick BSTS nanoflake devices. Using standard bottom gate with SiO2 as a dielectric layer, pronounced ambipolar electric field effect was observed in devices fabricated with flakes of 100 - 200 nm thick. Moreover, angle-dependent magneto-resistances of a nanoflake device with thickness of 596 nm are fitted to a universal curve for the perpendicular component of the applied magnetic field. The value of phase coherence length obtained from 2D weak antilocalization fitting further confirmed the surface dominated transport. Our results open a path for realization of novel electric and spintronic devices based on the topological helical surface states.



قيم البحث

اقرأ أيضاً

285 - B. Xia , P. Ren , Azat Sulaev 2011
Topological insulator is composed of an insulating bulk state and time reversal symmetry protected two-dimensional surface states. One of the characteristics of the surface states is the locking between electron momentum and spin orientation. Here, w e report a novel in-plane anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. To explain the novel effect, we propose that the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructure forms a spin-valve or Giant magnetoresistance device due to spin-momentum locking. The novel in-plane anisotropic magnetoresistance can be explained as a Giant magnetoresistance effect of the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures.
We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films -- Bi2Se3 and (Bi,Sb)2Te3 -- deposited by molecular beam epitaxy on yttrium iron garnet thin fi lms. By systematically varying the Bi2Se3 film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (lambda_IREE), increases dramatically as the film thickness is increased from 2 quintuple layers, saturating above 6 quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological insulator/ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of YIG/(BiSb)2Te3 heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and lambda_IREE.
Confining two dimensional Dirac fermions on the surface of topological insulators has remained an outstanding conceptual challenge. Here we show that Dirac fermion confinement is achievable in topological crystalline insulators (TCI), which host mult iple surface Dirac cones depending on the surface termination and the symmetries it preserves. This confinement is most dramatically reflected in the flux dependence of these Dirac states in the nanowire geometry, where different facets connect to form a closed surface. Using SnTe as a case study, we show how wires with all four facets of the <100> type display pronounced and unique Aharonov-Bohm oscillations, while nanowires with the four facets of the <110> type such oscillations are absent due to a strong confinement of the Dirac states to each facet separately. Our results place TCI nanowires as versatile platform for confining and manipulating Dirac surface states.
Topological insulators are expected to be a promising platform for novel quantum phenomena, whose experimental realizations require sophisticated devices. In this Technical Review, we discuss four topics of particular interest for TI devices: topolog ical superconductivity, quantum anomalous Hall insulator as a platform for exotic phenomena, spintronic functionalities, and topological mesoscopic physics. We also discuss the present status and technical challenges in TI device fabrications to address new physics.
Recently, the topological classification of electronic states has been extended to a new class of matter known as topological crystalline insulators. Similar to topological insulators, topological crystalline insulators also have spin-momentum locked surface states; but they only exist on specific crystal planes that are protected by crystal reflection symmetry. Here, we report an ultra-low temperature scanning tunneling microscopy and spectroscopy study on topological crystalline insulator SnTe nanoplates grown by molecular beam epitaxy. We observed quasiparticle interference patterns on the SnTe (001) surface that can be interpreted in terms of electron scattering from the four Fermi pockets of the topological crystalline insulator surface states in the first surface Brillouin zone. A quantitative analysis of the energy dispersion of the quasiparticle interference intensity shows two high energy features related to the crossing point beyond the Lifshitz transition when the two neighboring low energy surface bands near the point merge. A comparison between the experimental and computed quasiparticle interference patterns reveals possible spin texture of the surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا