ترغب بنشر مسار تعليمي؟ اضغط هنا

Confined vs. extended Dirac surface states in topological crystalline insulator nanowires

279   0   0.0 ( 0 )
 نشر من قبل Roni Majlin Skiff
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Confining two dimensional Dirac fermions on the surface of topological insulators has remained an outstanding conceptual challenge. Here we show that Dirac fermion confinement is achievable in topological crystalline insulators (TCI), which host multiple surface Dirac cones depending on the surface termination and the symmetries it preserves. This confinement is most dramatically reflected in the flux dependence of these Dirac states in the nanowire geometry, where different facets connect to form a closed surface. Using SnTe as a case study, we show how wires with all four facets of the <100> type display pronounced and unique Aharonov-Bohm oscillations, while nanowires with the four facets of the <110> type such oscillations are absent due to a strong confinement of the Dirac states to each facet separately. Our results place TCI nanowires as versatile platform for confining and manipulating Dirac surface states.



قيم البحث

اقرأ أيضاً

The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confineme nt, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
Wireless technology relies on the conversion of alternating electromagnetic fields to direct currents, a process known as rectification. While rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable highly controllable rectification have recently been discovered. One such effect is magnetochiral anisotropy (MCA), where the resistance of a material or a device depends on both the direction of current flow and an applied magnetic field. However, the size of rectification possible due to MCA is usually extremely small, because MCA relies on electronic inversion symmetry breaking which typically stems from intrinsic spin-orbit coupling - a relativistic effect - in a non-centrosymmetric environment. Here, to overcome this limitation, we artificially break inversion symmetry via an applied gate voltage in thin topological insulator (TI) nanowire heterostructures and theoretically predict that such a symmetry breaking can lead to a giant MCA effect. Our prediction is confirmed via experiments on thin bulk-insulating (Bi$_{1-x}$Sb$_{x}$)$_2$Te$_3$ TI nanowires, in which we observe the largest ever reported size of MCA rectification effect in a normal conductor - over 10000 times greater than in a typical material with a large MCA - and its behaviour is consistent with theory. Our findings present new opportunities for future technological applications of topological devices.
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show t hat these materials exhibit type-I as well as type-II Dirac surface states protected by reflection symmetry. While type-I Dirac states give rise to closed circular Fermi surfaces, type-II Dirac surface states are characterized by open electron and hole pockets that touch each other. We find that the type-II Dirac states exhibit characteristic van-Hove singularities in their dispersion, which can serve as an experimental fingerprint. In addition, we study the response of the surface states to magnetic fields.
In the recently discovered topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with a unique set of characteristics. Among the theoretical predictions for TCIs is the possibility of imparting m ass to the massless Dirac fermions by breaking crystal symmetry, as well as a Lifshitz transition with a change of Fermi surface topology. Here we report high resolution scanning tunneling microscopy studies of a TCI, Pb1-xSnxSe. We demonstrate the formation of zero mass Dirac fermions protected by crystal symmetry and the mechanism of mass generation via symmetry breaking, which constitute the defining characteristics of TCIs. In addition, we show two distinct regimes of fermiology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.
We present angle resolved photoemission spectroscopy measurements of the surface states on in-situ grown (111) oriented films of Pb$_{1-x}$Sn$_{x}$Se, a three dimensional topological crystalline insulator. We observe surface states with Dirac-like di spersion at $bar{Gamma}$ and $bar{M}$ in the surface Brillouin zone, supporting recent theoretical predictions for this family of materials. We study the parallel dispersion isotropy and Dirac-point binding energy of the surface states, and perform tight-binding calculations to support our findings. The relative simplicity of the growth technique is encouraging, and suggests a clear path for future investigations into the role of strain, vicinality and alternative surface orientations in (Pb,Sn)Se compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا