ﻻ يوجد ملخص باللغة العربية
Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonalization. We present an error analysis that quantifies the accuracy using a generalized moment expansion, allowing us to distinguish between different approximations. We identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this with the perturbation theory and isotropic entanglement theory.
We study the dynamics of one and two dimensional disordered lattice bosons/fermions initialized to a Fock state with a pattern of $1$ and $0$ particles on $A$ and ${bar A}$ sites. For non-interacting systems we establish a universal relation between
We investigate the high-frequency behavior of the density of vibrational states in three-dimensional elasticity theory with spatially fluctuating elastic moduli. At frequencies well above the mobility edge, instanton solutions yield an exponentially
We describe how to engineer wavefunction delocalization in disordered systems modelled by tight-binding Hamiltonians in d>1 dimensions. We show analytically that a simple product structure for the random onsite potential energies, together with suita
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency
It is commonly believed that Anderson localized states and extended states do not coexist at the same energy. Here we propose a simple mechanism to achieve the coexistence of localized and extended states in a band in a class of disordered quasi-1D a