ﻻ يوجد ملخص باللغة العربية
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be---to some extent---manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards a complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.
Mesoscopic fluctuations of the local density of states encode multifractal correlations in disorderedelectron systems. We study fluctuations of the local density of states in a superconducting state of weakly disordered films. We perform numerical co
Motivated by recent high-resolution scanning tunneling microscopy (STM) experiments in the quantum Hall regime both on massive two-dimensional electron gas and on graphene, we consider theoretically the disorder averaged nonlocal correlations of the
We investigate the high-frequency behavior of the density of vibrational states in three-dimensional elasticity theory with spatially fluctuating elastic moduli. At frequencies well above the mobility edge, instanton solutions yield an exponentially
The electronic properties of non-interacting particles moving on a two-dimensional bricklayer lattice are investigated numerically. In particular, the influence of disorder in form of a spatially varying random magnetic flux is studied. In addition,
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi