ﻻ يوجد ملخص باللغة العربية
In many important situations the dominant dephasing mechanism in cryogenic rare-earth-ion doped systems is due to magnetic field fluctuations from spins in the host crystal. Operating at a magnetic field where a transition has a zero first-order-Zeeman (ZEFOZ) shift can greatly reduce this dephasing. Here we identify the location of transitions with zero first-order Zeeman shift for optical transitions in Pr3+:YAG and for spin transitions in Er3+:Y2SiO5. The long coherence times that ZEFOZ would enable would make Pr3+:YAG a strong candidate for achieving the strong coupling regime of cavity QED, and would be an important step forward in creating long-lived telecommunications wavelength quantum memories in Er3+:Y2SiO5. This work relies mostly on published spin Hamiltonian parameters but Raman heterodyne spectroscopy was performed on Pr3+:YAG to measure the parameters for the excited state.
Optically addressable spins are actively investigated in quantum communication, processing and sensing. Optical and spin coherence lifetimes, which determine quantum operation fidelity and storage time, are often limited by spin-spin interactions, wh
We investigate a novel hybrid system composed of an ensemble of room temperature rare-earth ions embedded in a bulk crystal, intrinsically coupled to internal strain via the surrounding crystal field. We evidence the generation of a mechanical respon
Short coherence times present a primary obstacle in quantum computing and sensing applications. In atomic systems, clock transitions (CTs), formed from avoided crossings in an applied Zeeman field, can substantially increase coherence times. We show
Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap cry
We describe a high-resolution spectroscopy method, in which the detection of single excitation events is enhanced by a complete loss of coherence of a superposition of two ground states. Thereby, transitions of a single isolated atom nearly at rest a