ﻻ يوجد ملخص باللغة العربية
Optically addressable spins are actively investigated in quantum communication, processing and sensing. Optical and spin coherence lifetimes, which determine quantum operation fidelity and storage time, are often limited by spin-spin interactions, which can be decreased by polarizing spins in their lower energy state using large magnetic fields and/or mK range temperatures. Here, we show that optical pumping of a small fraction of ions with a fixed frequency laser, coupled with spin-spin interactions and spin diffusion, leads to substantial spin polarization in a paramagnetic rare earth doped crystal, $^{171}$Yb$^{3+}$:YSO. Indeed, up to more than 90 % spin polarizations have been achieved at 2 K and zero magnetic field. Using this spin polarization mechanism, we furthermore demonstrate an increase in optical coherence lifetime from 0.3 ms to 0.8 ms, due to a strong decrease in spin-spin interactions. This effect opens the way to new schemes for obtaining long optical and spin coherence lifetimes in various solid-state systems such as ensembles of rare earth ions or color centers in diamond, which is of interest for a broad range of quantum technologies.
The inhomogeneity of an electron spin ensemble as well as fluctuating environment acting upon individual spins drastically shorten the spin coherence time $T_2$ and hinder coherent spin manipulation. We show that this problem can be solved by the sim
In many important situations the dominant dephasing mechanism in cryogenic rare-earth-ion doped systems is due to magnetic field fluctuations from spins in the host crystal. Operating at a magnetic field where a transition has a zero first-order-Zeem
Inelastic neutron scattering was employed to study the crystal-field interaction in the strontium-doped rare-earth compounds R(x)Sr(1-x)CoO(3-z) (R=Pr, Nd, Ho, and Er). Particular emphasis is laid on the effect of oxygen deficiencies which naturally
We investigate a novel hybrid system composed of an ensemble of room temperature rare-earth ions embedded in a bulk crystal, intrinsically coupled to internal strain via the surrounding crystal field. We evidence the generation of a mechanical respon
Based on the electronic band structure obtained from first principles DFT calculations, the opticalspectra of yttrium and neodymium nickelates are computed. We show that the results are in fairagreement with available experimental data. We clarify th