ﻻ يوجد ملخص باللغة العربية
Luminescence spectra of NiO have been investigated under vacuum ultraviolet (VUV) and soft X-ray (XUV) excitation. Photoluminescence (PL) spectra show broad emission bands centered at about 2.3 and 3.2 eV. The PL excitation (PLE) spectral evolution and lifetime measurements reveal that two mechanisms with short and long decay times, attributed to the d($e_g$)-d($e_g$) and p($pi$)-d charge transfer (CT) transitions in the range 4-6,eV, respectively, are responsible for the observed emissions, while the most intensive p($sigma$)-d CT transition at 7,eV appears to be a weak if any PL excitation mechanism. The PLE spectra recorded in the 4-7,eV range agree with the RIXS and reflectance data. Making use of the XUV excitation allows us to avoid the predominant role of the surface effects in luminescence and reveal bulk luminescence with puzzling well isolated doublet of very narrow lines with close energies near 3.3,eV characteristic for recombination transitions in self-trapped emph{d}-emph{d} CT excitons formed by coupled Jahn-Teller Ni$^+$ and Ni$^{3+}$ centers. This conclusion is supported both by a comparative analysis of the luminescence spectra for NiO and solid solutions Ni$_{x}$Zn$_{1-x}$O, and by a comprehensive cluster model assignement of different emph{p}-emph{d} and emph{d}-emph{d} CT transitions, their relaxation channels. To the best of our knowledge it is the first observation of the self-trapping for emph{d}-emph{d} CT excitons. Our paper shows the time resolved luminescence measurements provide an instructive tool for elucidation of the emph{p}-emph{d} and emph{d}-emph{d} CT excitations and their relaxation in 3d oxides.
The evolution of the electronic structures of strongly correlated insulators with doping has long been a central fundamental question in condensed matter physics; it is also of great practical relevance for applications. We have studied the evolution
X-ray photoemission spectra generally exhibit satellite features in addition to the quasi-particle peaks due to many-body excitations, which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge
We investigate the behavior of a $d$-$d$ transition in NiO using a new x-ray spectrometer with 0.025 eV resolution at 15816 eV, and via ab-initio ligand field theory calculations. The transition at ~1.7 eV energy transfer is measured at temperatures
We have performed a detailed angel-resolved photoemission spectroscopy study of in-situ prepared SrVO3 thin films. Naturally capped by a ``transparent protective layer, contributions from surface states centered at ~ -1.5 eV are dramatically reduced,
We report a high-resolution resonant inelastic x-ray scattering study of La2CuO4. A number of spectral features are identified that were not clearly visible in earlier lower-resolution data. The momentum dependence of the spectral weight and the disp