ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-transfer exciton in La2CuO4 probed with resonant inelastic x-ray scattering

147   0   0.0 ( 0 )
 نشر من قبل David Ellis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a high-resolution resonant inelastic x-ray scattering study of La2CuO4. A number of spectral features are identified that were not clearly visible in earlier lower-resolution data. The momentum dependence of the spectral weight and the dispersion of the lowest energy excitation across the insulating gap have been measured in detail. The temperature dependence of the spectral features was also examined. The observed charge transfer edge shift, along with the low dispersion of the first charge transfer excitation are attributed to the lattice motion being coupled to the electronic system. In addition, we observe a dispersionless feature at 1.8 eV, which is associated with a d-d crystal field excitation.



قيم البحث

اقرأ أيضاً

We report a resonant inelastic x-ray scattering study of the dispersion relations of charge transfer excitations in insulating La$_2$CuO$_4$. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitatio n has a gap energy of $sim 2.2$ eV at the zone center, and a dispersion of $sim 1$ eV. The spectral weight of this mode becomes dramatically smaller around ($pi$, $pi$). The second peak shows a smaller dispersion ($sim 0.5$ eV) with a zone-center energy of $sim 3.9$ eV. We argue that these are both highly dispersive exciton modes damped by the presence of the electron-hole continuum.
Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than i nelastic neutron scattering (INS). Here we report high-resolution RIXS measurements of magnetic excitations of La2CuO4, the antiferromagnetic parent of one system of high-temperature superconductors. At high energies (~2 eV), the RIXS spectra show angular-dependent dd orbital excitations which are found to be in good agreement with single-site multiplet calculations. At lower energies (<0.3 eV), we show that the wavevector-dependent RIXS intensities are proportional to the product of the single-ion spin-flip cross section and the dynamical susceptibility of the spin-wave excitations. When the spin-flip crosssection is dividing out, the RIXS magnon intensities show a remarkable resemblance to INS data. Our results show that RIXS is a quantitative probe the dynamical spin susceptibility in cuprate and therefore should be used for quantitative investigation of other correlated electron materials.
241 - Martin Sundermann 2019
Strongly correlated materials are characterized by the presence of electron-electron interactions in their electronic structure. They often have remarkable properties and transitions between competing phases of very different electronic and magnetic order. This thesis focuses on strongly correlated $f$-electron compounds containing Ce, Sm, and U. These materials exhibit a so-called heavy-fermion or Kondo-lattice behavior. They can become insulating due to hybridization effects (Kondo-insulator) or develop multipolar (hidden) order. Kondo insulators have recently been discussed in the context of strongly correlated topological insulators. This new aspect caused an enormous activity in the field of Kondo insulators, theoretically as well as experimentally. Multipolar order as well as the formation of a Kondo insulating state strongly depend on the symmetry of the $f$ states involved. Also the character of the surface states in a topological insulator is determined by the properties of the bulk states. Therefore the scope of this thesis has been to unveil the underlying symmetries of the bulk $f$ states. Here the compounds CeB$_6$, UO$_2$, and URu$_2$Si$_2$, which exhibit multipolar order, as well as the Kondo insulators (semimetals) SmB$_6$ and CeRu$_4$Sn$_6$ have been studied.
We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the Cu and Ni K edges in La2CuO4 and La2NiO4, respectively. We make use of the Keldysh-Green-function formalism, in which the RIXS intensity is described by a product of incident-ph oton-dependent factor and density-density correlation function in the 3d states. The former factor is calculated using the $4p$ density of states given by an ab initio band structure calculation and the latter using the wavefunctions given by a Hartree-Fock calculation of a multi-orbital tight-binding model. The initial state is described within the Hartree-Fock approximation and the electron correlations on charge excitations are treated within the random phase approximation. The calculated RIXS spectra well reproduce several characteristic features in the experiments. Although several groups have interpreted the RIXS peaks as bound excitons, our calculation indicates that they should be interpreted as band-to-band excitations augmented by electron correlations. The difference in RIXS spectra between La2CuO4 and La2NiO4 is explained from this point of view.
482 - K. Ishii , M. Hoesch , T. Inami 2007
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in u ndoped insulators is found to commonly show a larger dispersion along the [pi,pi] direction than the [pi,0] direction. On the other hand, the resonance condition displays material dependence. Upon hole doping, the dispersion of the Mott gap excitation becomes weaker and an intraband excitation appears as a continuum intensity below the gap at the same time. In the case of electron doping, the Mott gap excitation is prominent at the zone center and a dispersive intraband excitation is observed at finite momentum transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا