ﻻ يوجد ملخص باللغة العربية
There are a finite number of distinct mechanically stable (MS) packings in model granular systems composed of frictionless spherical grains. For typical packing-generation protocols employed in experimental and numerical studies, the probabilities with which the MS packings occur are highly nonuniform and depend strongly on parameters in the protocol. Despite intense work, it is extremely difficult to predict {it a priori} the MS packing probabilities, or even which MS packings will be the most versus the least probable. We describe a novel computational method for calculating the MS packing probabilities by directly measuring the volume of the MS packing `basin of attraction, which we define as the collection of initial points in configuration space at {it zero packing fraction} that map to a given MS packing by following a particular dynamics in the density landscape. We show that there is a small core region with volume $V^c_n$ surrounding each MS packing $n$ in configuration space in which all initial conditions map to a given MS packing. However, we find that the MS packing probabilities are very weakly correlated with core volumes. Instead, MS packing probabilities obtained using initially dilute configurations are determined by complex geometric features of the basin of attraction that are distant from the MS packing.
High strength-to-weight ratio materials can be constructed by either maximizing strength or minimizing weight. Tensegrity structures and aerogels take very different paths to achieving high strength-to-weight ratios but both rely on internal tensile
For packings of hard but not perfectly rigid particles, the length scales that govern the packing geometry and the contact forces are well separated. This separation of length scales is explored in the force network ensemble, where one studies the sp
We investigate the mechanical response of jammed packings of circulo-lines, interacting via purely repulsive, linear spring forces, as a function of pressure $P$ during athermal, quasistatic isotropic compression. Prior work has shown that the ensemb
A finite element program is presented to simulate the process of packing and coiling elastic wires in two- and three-dimensional confining cavities. The wire is represented by third order beam elements and embedded into a corotational formulation to
The wall shear rate distribution P(gamma) is investigated for pressure-driven Stokes flow through random arrangements of spheres at packing fractions 0.1 <= phi <= 0.64. For dense packings, P(gamma) is monotonic and approximately exponential. As phi