ترغب بنشر مسار تعليمي؟ اضغط هنا

The wall shear rate distribution for flow in random sphere packings

155   0   0.0 ( 0 )
 نشر من قبل Patrick Warren
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The wall shear rate distribution P(gamma) is investigated for pressure-driven Stokes flow through random arrangements of spheres at packing fractions 0.1 <= phi <= 0.64. For dense packings, P(gamma) is monotonic and approximately exponential. As phi --> 0.1, P(gamma) picks up additional structure which corresponds to the flow around isolated spheres, for which an exact result can be obtained. A simple expression for the mean wall shear rate is presented, based on a force-balance argument.



قيم البحث

اقرأ أيضاً

We present a multiscale simulation algorithm for amorphous materials, which we illustrate and validate in a canonical case of dense granular flow. Our algorithm is based on the recently proposed Spot Model, where particles in a dense random packing u ndergo chain-like collective displacements in response to diffusing spots of influence, carrying a slight excess of interstitial free volume. We reconstruct the microscopic dynamics of particles from the coarse grained dynamics of spots by introducing a localized particle relaxation step after each spot-induced block displacement, simply to enforce packing constraints with a (fairly arbitrary) soft-core repulsion. To test the model, we study to what extent it can describe the dynamics of up to 135,000 frictional, viscoelastic spheres in granular drainage simulated by the discrete-element method (DEM). With only five fitting parameters (the radius, volume, diffusivity, drift velocity, and injection rate of spots), we find that the spot simulations are able to largely reproduce not only the mean flow and diffusion, but also some subtle statistics of the flowing packings, such as spatial velocity correlations and many-body structural correlations. The spot simulations run over 100 times faster than DEM and demonstrate the possibility of multiscale modeling for amorphous materials, whenever a suitable model can be devised for the coarse-grained spot dynamics.
The Boltzmann equation for inelastic Maxwell models is considered to determine the velocity moments through fourth degree in the simple shear flow state. First, the rheological properties (which are related to the second-degree velocity moments) are {em exactly} evaluated in terms of the coefficient of restitution $alpha$ and the (reduced) shear rate $a^*$. For a given value of $alpha$, the above transport properties decrease with increasing shear rate. Moreover, as expected, the third-degree and the asymmetric fourth-degree moments vanish in the long time limit when they are scaled with the thermal speed. On the other hand, as in the case of elastic collisions, our results show that, for a given value of $alpha$, the scaled symmetric fourth-degree moments diverge in time for shear rates larger than a certain critical value $a_c^*(alpha)$ which decreases with increasing dissipation. The explicit shear-rate dependence of the fourth-degree moments below this critical value is also obtained.
63 - Hossein Nili , Ali Naji 2018
We use a continuum model to report on the behavior of a dilute suspension of chiral swimmers subject to externally imposed shear in a planar channel. Swimmer orientation in response to the imposed shear can be characterized by two distinct phases of behavior, corresponding to unimodal or bimodal distribution functions for swimmer orientation along the channel. These phases indicate the occurrence (or not) of a population splitting phenomenon changing the swimming direction of a macroscopic fraction of active particles to the exact opposite of that dictated by the imposed flow. We present a detailed quantitative analysis elucidating the complexities added to the population splitting behavior of swimmers when they are chiral. In particular, the transition from unimodal to bimodal and vice versa are shown to display a re-entrant behavior across the parameter space spanned by varying the chiral angular speed. We also present the notable effects of particle aspect ratio and self-propulsion speed on system phase behavior and discuss potential implications of our results in applications such as swimmer separation/sorting.
For packings of hard but not perfectly rigid particles, the length scales that govern the packing geometry and the contact forces are well separated. This separation of length scales is explored in the force network ensemble, where one studies the sp ace of allowed force configurations for a given, frozen contact geometry. Here we review results of this approach, which yields nontrivial predictions for the effect of packing dimension and anisotropy on the contact force distribution $P(f)$, the response to overall shear and point forcing, all of which can be studied in great numerical detail. Moreover, there are emerging analytical approaches that very effectively capture, for example, the form of force distributions.
178 - K. T. Trinh 2010
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscom eters. Key words: non-Newtonian, wall shear rate, turbulent, rheometer
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا