ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of spin polarization on resistivity of a two-dimensional electron gas in Si MOSFET at metallic densities

227   0   0.0 ( 0 )
 نشر من قبل Denis I. Golosov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Positive magnetoresistance (PMR) of a silicon MOSFET in parallel magnetic fields B has been measured at high electron densities n >> n_c where n_c is the critical density of the metal-insulator transition (MIT). It turns out that the normalized PMR curves, R(B)/R(0), merge together when the field is scaled according to B/B_c(n) where B_c is the field in which electrons become fully spin polarized. The values of B_c have been calculated from the simple equality between the Zeeman splitting energy and the Fermi energy taking into account the experimentally measured dependence of the spin susceptibility on the electron density. This extends the range of validity of the scaling all the way to a deeply metallic regime far away from MIT. The subsequent analysis of PMR for low n >~ n_c demonstrated that the merging of the initial parts of curves can bee achieved only with taking into account the temperature dependence of B_c. It is also shown that the shape of the PMR curves at strong magnetic fields is affected by a crossover from a purely two-dimensional (2D) electron transport to a regime where out-of-plane carrier motion becomes important (quasi-three-dimensional regime).



قيم البحث

اقرأ أيضاً

We report the observation of a metal-insulator transition in a two-dimensional electron gas in silicon. By applying substrate bias, we have varied the mobility of our samples, and observed the creation of the metallic phase when the mobility was high enough ($mu ~> 1 m^2/Vs$), consistent with the assertion that this transition is driven by electron-electron interactions. In a perpendicular magnetic field, the magnetoconductance is positive in the vicinity of the transition, but negative elsewhere. Our experiment suggests that such behavior results from a decrease of the spin-dependent part of the interaction in the vicinity of the transition.
We argue that the magnetic susceptibility data, Refs. 1-3, for the low-density two-dimensional (2D) silicon-based electron gas indicate that magnetically active electrons are localised in spin-droplets. The droplets exist in both the insulating and m etallic phases, and interact ferromagnetically, forming an effective 2D Heisenberg ferromagnet. Comparing the data with known analytical and numerical results for a 2D Heisenberg ferromagnet, we determine that JS^2 approx 0.6K, where S is the spin of the droplet and J is the ferromagnetic exchange constant between droplets. We further argue that most likely S=1 with four electrons occupying each droplet on average. We discuss the dependence of the magnetic susceptibility and the specific heat on the external magnetic field, which follows from the model, and hence we suggest further experimental tests of the model.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her e we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the e lectron-hole center-of-mass momentum density are reported for a range of electron--hole mass ratios and electron densities. We find numerical evidence of a crossover from a collective Mahan exciton to a trion-dominated state in a density range in agreement with that found in recent experiments on quantum well heterostructures.
We demonstrate the formation of a two-dimensional electron gas (2DEG) at the $(100)$ surface of the $5d$ transition-metal oxide KTaO$_3$. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk ban d structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, our measurements provide a direct upper bound for potential Rashba spin splitting of only $Delta{k}_parallelsim0.02$ AA$^{-1}$ at the Fermi level. The polar nature of the KTaO$_3(100)$ surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO$_3(100)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا