ﻻ يوجد ملخص باللغة العربية
The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the electron-hole center-of-mass momentum density are reported for a range of electron--hole mass ratios and electron densities. We find numerical evidence of a crossover from a collective Mahan exciton to a trion-dominated state in a density range in agreement with that found in recent experiments on quantum well heterostructures.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her
The coupling of optical and electronic degrees of freedom together with quantum confinement in low-dimensional electron systems is particularly interesting for achieving exotic functionalities in strongly correlated oxide electronics. Recently, high
Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-pa
We demonstrate the formation of a two-dimensional electron gas (2DEG) at the $(100)$ surface of the $5d$ transition-metal oxide KTaO$_3$. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk ban
Detailed understanding of the role of single dopant atoms in host materials has been crucial for the continuing miniaturization in the semiconductor industry as local charging and trapping of electrons can completely change the behaviour of a device.