ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Structure of the Superconductor K0.8Fe1.6+xSe2: Evidence of Large Structural Disorder

88   0   0.0 ( 0 )
 نشر من قبل Trevor A. Tyson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The local structure of superconducting single crystals of K0.8Fe1.6+xSe2 with Tc = 32.6 K was studied by x-ray absorption spectroscopy. Near-edge spectra reveal that the average valence of Fe is 2+. The room temperature structure about the Fe, K and Se sites was examined by iron, selenium and potassium K-edge measurements. The structure about the Se and Fe sites shows a high degree of order in the nearest neighbor Fe-Se bonds. On the other hand, the combined Se and K local structure measurements reveal a very high level of structural disorder in the K layers. Temperature dependent measurements at the Fe sites show that the Fe-Se atomic correlation follows that of the Fe-As correlation in the superconductor LaFeAsO0.89F0.11 - having the same effective Einstein temperature (stiffness). In K0.8Fe1.6+xSe2, the nearest neighbor Fe-Fe bonds has a lower Einstein temperature and higher structural disorder than in LaFeAsO0.89F0.11. The moderate Fe site and high K site structural disorder is consistent with the high normal state resistivity seen in this class of materials. For higher shells, an enhancement of the second nearest neighbor Fe-Fe interaction is found just below Tc and suggests that correlations between Fe magnetic ion pairs beyond the first neighbor are important in models of magnetic order and superconductivity in these materials.



قيم البحث

اقرأ أيضاً

The structural properties of the CaFe2As2 have been investigated by x-ray and neutron powder diffraction techniques as a function of temperature. Unambiguous experimental evidence is shown for coexistence of tetragonal and orthorhombic phases below 1 70 K in contrast to existing literature. Detailed Rietveld analyses of thermo-diffractograms show that the sample does not transform completely in to the orthorhombic phase at the lowest temperature even though it is the majority phase. We have found that the unit cell volume of the orthorhombic phase is higher compared to that of the tetragonal phase for all the temperatures. X-ray data on CaFe2As2 shows anomalous (at) lattice parameter contraction with increasing temperature and phase co-existence behavior below 170 K unlike other members of the 122 family of compounds like SrFe2As2 and EuFe2As2. Temperature dependent magnetization of polycrystalline CaFe2As2 sample show weak anomalies below 170 K. This behavior of the polycrystalline sample is in contrast to that of a single crystal reported earlier.
We report pair distribution function measurements of the iron-based superconductor FeSe above and below the structural transition temperature. Structural analysis reveals a local orthorhombic distortion with a correlation length of about 4 nm at temp eratures where an average tetragonal symmetry is observed. The analysis further demonstrates that the local distortion is larger than the distortion at temperatures where the average observed symmetry is orthorhombic. Our results suggest that the low-temperature macroscopic nematic state in FeSe forms from an imperfect ordering of orbital-degeneracy-lifted nematic fluctuations which persist up to at least 300 K.
The new rare-earth arsenate superconductors are layered, low carrier density compounds with many similarities to the high-Tc cuprates. An important question is whether they also exhibit weak-coupling across randomly oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence, even after powdering. We conclude that these samples exhibit substantial electromagnetic granularity on a scale approximating the grain size, though we cannot yet determine whether this is intrinsic or extrinsic.
We report synthesis of non superconducting parent compound of iron chalcogenide, i.e., FeTe single crystal by self flux method. The FeTe single crystal is crystallized in tetragonal structure with the P4/nmm space group. The detailed SEM (scanning el ectron microscopy) results showed that the crystals are formed in slab like morphology and are near (slight deficiency of Te) stoichiometric with homogenous distribution of Fe and Te. The coupled structural and magnetic phase transition is seen at around 70K in both electrical resistivity and magnetization measurements, which is hysteric (deltaT = 5K) in nature with cooling and warming cycles. Magnetic susceptibility (chi-T) measurements showed the magnetic transition to be of antiferromagnetic nature, which is substantiated by isothermal magnetization (M-H) plots as well. The temperature dependent electrical resistivity measured in 10kOe field in both in plane and out of plane field directions showed that the hysteric width nearly becomes double to deltaT = 10K, and is maximum for the out of plane field direction for the studied FeTe single crystal. We also obtained a sharp spike like peak in heat capacity Cp(T) measurement due to the coupled structural and magnetic order phase transitions.
Eumelanin is regarded to be an attractive candidate material for biomedical applications. Despite many theoretical studies exploring the structure of eumelanin, an exact mapping of the energetic landscape of the very large phase space of eumelanin is still elusive. In this work, we implement a piecewise Ising Model to predict formation enthalpies of Eumelanin single and double tetramers, and demonstrate its superior predictive and generalizable capabilities. We believe this model will prove very useful in theoretically characterizing the many unique properties attributed to its disorder. The modular nature of the predictive Ising model built up in this work is well-suited for analysis and characterization of a larger phase space of eumelanin polymers, including hexamers and octomers, as well as larger stacked structures, such as potential triple and quadruple eumelanin tetramers. Absorbance data can be incorporated with population-wide predictions of polymer abundance to produce weighted-average predictions of broadband absorbance of bulk eumelanin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا