ترغب بنشر مسار تعليمي؟ اضغط هنا

WASP-36b: A new transiting planet around a metal-poor G-dwarf, and an investigation into analyses based on a single transit light curve

169   0   0.0 ( 0 )
 نشر من قبل Alexis Smith
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54-d orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (Teff = 5959 pm 134 K), with [Fe/H] = -0.26 pm 0.10. We determine the planet to have mass and radius respectively 2.30 pm 0.07 and 1.28 pm 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allows us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analysing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.



قيم البحث

اقرأ أيضاً

318 - E. K. Simpson 2010
We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting a mv = 12.7 G2-type dwarf, with a period of 3.577471 pm 0.00001 d, transit epoch T0 = 2455338.6188 pm 0.0006 (HJD), and a transit duration 0.1304 pm 0.0018 d. The planetary com panion has a mass Mp = 1.80 pm 0.17 MJ and radius Rp = 1.16 pm 0.07 RJ, yielding a mean density of 1.15 pm 0.15 times that of Jupiter. From a spectral analysis and comparisons with stellar models, we find the host star has M* = 0.925 pm 0.120 Msun, R* = 1.003 pm 0.053 Rsun, Teff = 5800 pm 150 K and [Fe/H] = -0.40 pm 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.
155 - J. D. Hartman 2009
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.
We confirm the planetary nature of a warm Jupiter transiting the early M dwarf TOI-1899, using a combination of available TESS photometry; high-precision, near-infrared spectroscopy with the Habitable-zone Planet Finder; and speckle and adaptive opti cs imaging. The data reveal a transiting companion on an $sim29$-day orbit with a mass and radius of $0.66pm0.07 mathrm{M_{J}}$ and $1.15_{-0.05}^{+0.04} mathrm{R_{J}}$, respectively. The star TOI-1899 is the lowest-mass star known to host a transiting warm Jupiter, and we discuss the follow-up opportunities afforded by a warm ($mathrm{T_{eq}}sim362$ K) gas giant orbiting an M0 star. Our observations reveal that TOI-1899.01 is a puffy warm Jupiter, and we suggest additional transit observations to both refine the orbit and constrain the true dilution observed in TESS.
We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radi al-velocity measurements yields a planetary mass of 1.02 +/- 0.03 M_Jup and radius of 1.32 +/- 0.08 R_Jup. The host star, WASP-26, has a mass of 1.12 +/- 0.03 M_sun and a radius of 1.34 +/- 0.06 R_sun and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 +/- 15 pc and an age of 6 +/- 2 Gy.
185 - P. F. L Maxted 2010
We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WASP-32, are depleted in lithium, but that the majority of these stars have similar lithium abundances to field stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا