ترغب بنشر مسار تعليمي؟ اضغط هنا

WASP-37b: a 1.8 MJ exoplanet transiting a metal-poor star

326   0   0.0 ( 0 )
 نشر من قبل Elaine Simpson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. K. Simpson




اسأل ChatGPT حول البحث

We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting a mv = 12.7 G2-type dwarf, with a period of 3.577471 pm 0.00001 d, transit epoch T0 = 2455338.6188 pm 0.0006 (HJD), and a transit duration 0.1304 pm 0.0018 d. The planetary companion has a mass Mp = 1.80 pm 0.17 MJ and radius Rp = 1.16 pm 0.07 RJ, yielding a mean density of 1.15 pm 0.15 times that of Jupiter. From a spectral analysis and comparisons with stellar models, we find the host star has M* = 0.925 pm 0.120 Msun, R* = 1.003 pm 0.053 Rsun, Teff = 5800 pm 150 K and [Fe/H] = -0.40 pm 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.



قيم البحث

اقرأ أيضاً

174 - F. Bouchy , L. Hebb , I. Skillen 2010
We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d peri od, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07 R_Jup and mass of 0.30 M_Jup, WASP-21b has a density close to 0.24 rho_Jup corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc.
193 - P. F. L Maxted 2010
We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WASP-32, are depleted in lithium, but that the majority of these stars have similar lithium abundances to field stars.
The star EPIC 210894022 has been identified from a light curve acquired through the K2 space mission as possibly orbited by a transiting planet. Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. We combin e the K2 photometry with reconnaissance spectroscopy and radial velocity (RV) measurements obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of EPIC 210894022 strongly suggest it to be a member of the thick disk population. We find that the star is a metal poor ([Fe/H]=-0.53+/-0.05 dex) and alpha-rich somewhat evolved solar-like object of spectral type G3 with Teff=5730+/-50 K, logg=4.15+/-0.1 (cgs), radius of 1.3+/-0.1 R_Sun, and mass of 0.88+/-0.02 M_Sun. The RV detection together with the imaging confirms with a high level of significance that the transit signature is caused by a super-Earth orbiting the star EPIC 210894022. We measure a mass of 8.6+/-3.9 M_Earth and a radius of 1.9+/-0.2 R_Earth. A second more massive object with a period longer than about 120 days is indicated by a long term linear acceleration. With an age of > 10 Gyrs this system is one of the oldest where planets is hitherto detected. Further studies of this planetary system is important since it contains information about the planetary formation process during a very early epoch of the history of our Galaxy.
We report the discovery of WASP-13b, a low-mass $ M_p = 0.46 ^{+ 0.06}_{- 0.05} M_J$ transiting exoplanet with an orbital period of $4.35298 pm 0.00004$ days. The transit has a depth of 9 mmag, and although our follow-up photometry does not allow us to constrain the impact parameter well ($0 < b < 0.46$), with radius in the range $R_p sim 1.06 - 1.21 R_J$ the location of WASP-13b in the mass-radius plane is nevertheless consistent with H/He-dominated, irradiated, low core mass and core-free theoretical models. The G1V host star is similar to the Sun in mass (M$_{*} = 1.03^{+0.11}_ {- 0.09} M_{odot}$) and metallicity ([M/H]=$0.0pm0.2$), but is possibly older ($8.5^{+ 5.5}_{- 4.9}$ Gyr).
We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P=3.7520656+-0.0000028d has a mass M_p=0.542+-0.050M_J and radius R_p=1.428+-0.077R_J, and is therefore the one of least dense transiting exoplanets so far discovered (rho_p=0.247+-0.035g cm^-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T_eff=6300+-100K and [Fe/H]=-0.17+-0.11.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا