ترغب بنشر مسار تعليمي؟ اضغط هنا

Static and dynamic properties of curved vapour-liquid interfaces by massively parallel molecular dynamics simulation

103   0   0.0 ( 0 )
 نشر من قبل Martin Horsch
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.



قيم البحث

اقرأ أيضاً

A parallel implementation of coupled spin-lattice dynamics in the LAMMPS molecular dynamics package is presented. The equations of motion for both spin only and coupled spin-lattice dynamics are first reviewed, including a detailed account of how mag neto-mechanical potentials can be used to perform a proper coupling between spin and lattice degrees of freedom. A symplectic numerical integration algorithm is then presented which combines the Suzuki-Trotter decomposition for non-commuting variables and conserves the geometric properties of the equations of motion. The numerical accuracy of the serial implementation was assessed by verifying that it conserves the total energy and the norm of the total magnetization up to second order in the timestep size. Finally, a very general parallel algorithm is proposed that allows large spin-lattice systems to be efficiently simulated on large numbers of processors without degrading its mathematical accuracy. Its correctness as well as scaling efficiency were tested for realistic coupled spin-lattice systems, confirming that the new parallel algorithm is both accurate and efficient.
Two-dimensional (2D) molybdenum disulfide (MoS2) has attracted significant attention because of its outstanding properties, suitable for application in several critical technologies like, solar cells, photocatalysis, lithium-ion batteries, nanoelectr onics, and electrocatalysis. Similar to graphene and other 2D materials, the physical and chemical properties of MoS2 can be tuned by the chemical functionalization and defects. In this investigation, our objective is to explore the mechanical properties of single-layer MoS2 functionalized by the hydrogen atoms. We moreover analyze the effects of different types of defects on the mechanical response of MoS2 at the room temperature. To investigate these systems, we conducted reactive molecular dynamics simulations using the ReaxFF forcefield. We demonstrate that an increase in the hydrogen adatoms or defects contents significantly affects the critical mechanical characteristics of MoS2, elastic modulus, tensile strength, stretchability and failure behavior. Our reactive molecular dynamics results provide useful information concerning the mechanical response of hydrogenated and defective MoS2 and the design of nanodevices.
Simulations of systems with quenched disorder are extremely demanding, suffering from the combined effect of slow relaxation and the need of performing the disorder average. As a consequence, new algorithms, improved implementations, and alternative and even purpose-built hardware are often instrumental for conducting meaningful studies of such systems. The ensuing demands regarding hardware availability and code complexity are substantial and sometimes prohibitive. We demonstrate how with a moderate coding effort leaving the overall structure of the simulation code unaltered as compared to a CPU implementation, very significant speed-ups can be achieved from a parallel code on GPU by mainly exploiting the trivial parallelism of the disorder samples and the near-trivial parallelism of the parallel tempering replicas. A combination of this massively parallel implementation with a careful choice of the temperature protocol for parallel tempering as well as efficient cluster updates allows us to equilibrate comparatively large systems with moderate computational resources.
In this work we present a molecular dynamics simulation of a FFM experiment. The tip-sample interaction is studied by varying the normal force in the tip and the temperature of the surface. The friction force, cA, at zero load and the friction coeffi cient, $mu$, were obtained. Our results strongly support the idea that the effective contact area, A, decreases with increasing temperature and the friction coefficient presents a clear signature of the premelting process of the surface.
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional traps across the thermal crossover from an amorphous solid- to liquid-like behaviors. While static correlations, that investigate the translational and bond orientational order in the confinements, show the footprints of hexatic-like phase at low temperature, dynamics of the particles slow down considerably in this state -- reminiscent of a supercooled liquid. Using density correlations, we probe intriguing signatures of long-lived inhomogeneities due to the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems indicating that, some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا