ترغب بنشر مسار تعليمي؟ اضغط هنا

Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics

75   0   0.0 ( 0 )
 نشر من قبل Tranchida Julien
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A parallel implementation of coupled spin-lattice dynamics in the LAMMPS molecular dynamics package is presented. The equations of motion for both spin only and coupled spin-lattice dynamics are first reviewed, including a detailed account of how magneto-mechanical potentials can be used to perform a proper coupling between spin and lattice degrees of freedom. A symplectic numerical integration algorithm is then presented which combines the Suzuki-Trotter decomposition for non-commuting variables and conserves the geometric properties of the equations of motion. The numerical accuracy of the serial implementation was assessed by verifying that it conserves the total energy and the norm of the total magnetization up to second order in the timestep size. Finally, a very general parallel algorithm is proposed that allows large spin-lattice systems to be efficiently simulated on large numbers of processors without degrading its mathematical accuracy. Its correctness as well as scaling efficiency were tested for realistic coupled spin-lattice systems, confirming that the new parallel algorithm is both accurate and efficient.



قيم البحث

اقرأ أيضاً

Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylin drical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.
The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures, and currently holds the world record for the largest molecular simulation with o ver four trillion particles. It enables the application of pair potentials to length and time scales which were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multi-center rigid potential models based on Lennard-Jones sites, point charges and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, e.g. for fluids at interfaces, as well as non-equilibrium molecular dynamics simulation of heat and mass transfer.
The Pair Approximation method has been formulated for the isotropic ferromagnetic Heisenberg model with spin $S=1$. The exchange interactions of arbitrary range have been taken into account. The single-ion anisotropy has been considered as well as th e external magnetic field. Within the method, the Gibbs free-energy has been derived, from which all thermodynamic properties can be self-consistently obtained. In order to illustrate the developed formalism, the numerical calculations have been performed for CrIAs planar magnetic semiconductor, a hypothetical material whose existence has been recently predicted by the Density Functional Theory-based calculations. For this model material, all the relevant thermodynamic magnetic properties have been studied. The numerical results have been presented in the figures and discussed.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her e we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas coupled to a diatomic molecular Bose gas by coherent Raman transitions. This system is shown to result in a new type of `superchemistry, in which giant collective oscillations bet ween the atomic and molecular gas can occur. The phenomenon is caused by stimulated emission of bosonic atoms or molecules into their condensate phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا