ﻻ يوجد ملخص باللغة العربية
We show theoretically that a monopole defect, analogous to the Dirac magnetic monopole, may exist as the ground state of a dilute spin-1 Bose-Einstein condensate. The ground-state monopole is not attached to a single semi-infinite Dirac string, but forms a point where the circulation of a single vortex line is reversed. Furthermore, the three-dimensional dynamics of this monopole defect are studied after the magnetic field pinning the monopole is removed and the emergence of antimonopoles is observed. Our scheme is experimentally realizable with the present-day state of the art.
We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin config
Calculation of the entropy of an ideal Bose Einstein Condensate (BEC) in a three dimensional trap reveals unusual, previously unrecognized, features of the Canonical Ensemble. It is found that, for any temperature, the entropy of the Bose gas is equa
We consider a quantum impurity immersed in a dipolar Bose Einstein condensate and study the properties of the emerging polaron. We calculate the energy, effective mass and quasi-particle residue of the dipolar polaron and investigate their behaviour
We theoretically investigate the role of multiple impurity atoms on the ground state properties of Bose polarons. The Bogoliubov approximation is applied for the description of the condensate resulting in a Hamiltonian containing terms beyond the Fro
We calculate analytically the entanglement and Renyi entropies, the negativity and the mutual information together with all the density and many-particle correlation functions for free bosons on a lattice in the ground state. We show that those quant