ﻻ يوجد ملخص باللغة العربية
We calculate analytically the entanglement and Renyi entropies, the negativity and the mutual information together with all the density and many-particle correlation functions for free bosons on a lattice in the ground state. We show that those quantities can be derived from a multinomial form of the reduced density matrix in the configuration space whose diagonal elements dictate the statistics of the particle distribution, while the off-diagonal coherence terms control the quantum fluctuations. We clarify by this analysis how to reconcile the logarithmic behavior of the entanglement entropy with the volume law of the particle number fluctuations.
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments t
We study entanglement and squeezing of two uncoupled impurities immersed in a Bose-Einstein condensate. We treat them as two quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. The Langevin-like quan
We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas i
We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion rela
We study hard core bosons on a two leg ladder lattice under the orbital effect of a uniform magnetic field. At densities which are incommensurate with flux, the ground state is a Meissner state, or a vortex state, depending on the strength of the flu