ﻻ يوجد ملخص باللغة العربية
This is the first of two papers investigating the deprojection and spherical averaging of ellipsoidal galaxy clusters. We specifically consider applications to hydrostatic X-ray and Sunyaev-Zeldovich (SZ) studies, though many of the results also apply to isotropic dispersion-supported stellar dynamical systems. Here we present analytical formulas for galaxy clusters described by a gravitational potential that is a triaxial ellipsoid of constant shape and orientation. For this model type we show that the mass bias due to spherically averaging X-ray observations is independent of the temperature profile, and for the special case of a scale-free logarithmic potential, there is exactly zero mass bias for any shape, orientation, and temperature profile. The ratio of spherically averaged intracluster medium (ICM) pressures obtained from SZ and X-ray measurements depends only on the ICM intrinsic shape, projection orientation, and H_0, which provides another illustration of how cluster geometry can be recovered through a combination of X-ray and SZ measurements. We also demonstrate that Y_SZ and Y_X have different biases owing to spherical averaging, which leads to an offset in the spherically averaged Y_SZ - Y_X relation. A potentially useful application of the analytical formulas presented is to assess the error range of an observable (e.g., mass, Y_SZ) accounting for deviations from assumed spherical symmetry, without having to perform the ellipsoidal deprojection explicitly. Finally, for dedicated ellipsoidal studies, we also generalize the spherical onion peeling method to the triaxial case for a given shape and orientation.
This is the second of two papers investigating the spherical averaging of ellipsoidal galaxy clusters in the context of X-ray and Sunyaev-Zeldovich (SZ) observations. In the present study we quantify the orientation-average bias and scatter in observ
All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~ 1600
We present scaling relations between the integrated Sunyaev-Zeldovich Effect (SZE) signal, $Y_{rm SZ}$, its X-ray analogue, $Y_{rm X}equiv M_{rm gas}T_{rm X}$, and total mass, $M_{rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) s
Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zeldov
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based we