ﻻ يوجد ملخص باللغة العربية
In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single photon to its polarization. Such transfer of quantum information, completely reversible, has been implemented adopting a electrically tunable q-plate device and a Sagnac interferomenter with a Doves prism. The adopted scheme exhibits a high fidelity and low losses.
The optical spin-orbit coupling occurring in a suitably patterned nonuniform birefringent plate known as `q-plate allows entangling the polarization of a single photon with its orbital angular momentum (OAM). This process, in turn, can be exploited f
The self-imaging, or Talbot Effect, that occurs with the propagation of periodically structured waves has enabled several unique applications in optical metrology, image processing, data transmission, and matter-wave interferometry. In this work, we
Quantum teleportation is a useful quantum information technology to transmit quantum states between different degrees of freedom. We here report a quantum state transfer experiment in the linear optical system, transferring a single photon state in t
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance he
So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglemen