ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology

132   0   0.0 ( 0 )
 نشر من قبل Shihao Ru
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum teleportation is a useful quantum information technology to transmit quantum states between different degrees of freedom. We here report a quantum state transfer experiment in the linear optical system, transferring a single photon state in the polarization degree of freedom (DoF) to another photon in the orbital angular momentum (OAM) quantum state via a biphoton OAM entangled channel. Our experimental method is based on quantum teleportation technology. The differences between ours and the original teleportation scheme is that the transfer state is known in ours, and our method is for different particles with different DoFs while the original one is for different particles with same DoF. Besides, our present experiment is implemented with a high Bell-efficiency since each of the four hybrid-entangled Bell states can be discriminated. We use six states of poles of the Bloch sphere to test our experiment, and the fidelity of the quantum state transfer is $91.8pm1.3%$.



قيم البحث

اقرأ أيضاً

The optical spin-orbit coupling occurring in a suitably patterned nonuniform birefringent plate known as `q-plate allows entangling the polarization of a single photon with its orbital angular momentum (OAM). This process, in turn, can be exploited f or building a bidirectional spin-OAM interface, capable of transposing the quantum information from the spin to the OAM degree of freedom of photons and textit{vice versa}. Here, we experimentally demonstrate this process by single-photon quantum tomographic analysis. Moreover, we show that two-photon quantum correlations such as those resulting from coalescence interference can be successfully transferred into the OAM degree of freedom.
In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single photon to its polarization. Such transfer of quantum information, completely reversible, has been imple mented adopting a electrically tunable q-plate device and a Sagnac interferomenter with a Doves prism. The adopted scheme exhibits a high fidelity and low losses.
In this work, we explore the feasibility of performing satellite-to-Earth quantum key distribution (QKD) using the orbital angular momentum (OAM) of light. Due to the fragility of OAM states the conventional wisdom is that turbulence would render OAM -QKD non-viable in a satellite-to-Earth channel. However, based on detailed phase screen simulations of the anticipated atmospheric turbulence we find that OAM-QKD is viable in some system configurations, especially if quantum channel information is utilized in the processing of post-selected states. More specifically, using classically entangled light as a probe of the quantum channel, and reasonably-sized transmitter-receiver apertures, we find that non-zero QKD rates are achievable on sea-level ground stations. Without using classical light probes, OAM-QKD is relegated to high-altitude ground stations with large receiver apertures. Our work represents the first quantitative assessment of the performance of OAM-QKD from satellites, showing under what circumstances the much-touted higher dimensionality of OAM can be utilized in the context of secure communications.
We show how strongly correlated ultracold bosonic atoms loaded in specific orbital angular momentum states of arrays of cylindrically symmetric potentials can realize a variety of spin-1/2 models of quantum magnetism. We consider explicitly the depen dence of the effective couplings on the geometry of the system and demonstrate that several models of interest related to a general $XYZ$ Heisenberg model with external field can be obtained. Furthermore, we discuss how the relative strength of the effective couplings can be tuned and which phases can be explored by doing so in realistic setups. Finally, we address questions concerning the experimental read-out and implementation and we argue that the stability of the system can be enhanced by using ring-shaped trapping potentials.
The self-imaging, or Talbot Effect, that occurs with the propagation of periodically structured waves has enabled several unique applications in optical metrology, image processing, data transmission, and matter-wave interferometry. In this work, we report on the first demonstration of a Talbot Effect with single photons prepared in a lattice of orbital angular momentum (OAM) states. We observe that upon propagation, the wavefronts of the single photons manifest self-imaging whereby the OAM lattice intensity profile is recovered. Furthermore, we show that the intensity at fractional Talbot distances is indicative of a periodic helical phase structure corresponding to a lattice of OAM states. This phenomenon is a powerful addition to the toolbox of orbital angular momentum and spin-orbit techniques that have already enabled many recent developments in quantum optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا