ﻻ يوجد ملخص باللغة العربية
We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (~3.7d and ~1250s, respectively). Our observations, for a total of ~43ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from ~5E16 g to 1E21g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.
We report on the Swift observations of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, which has an orbital period of ~3.7 d. Our monitoring, for a total of ~43 ks, spans over three orbits and represents the most intense and com
We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our obs
IGR J18483-0311 is an X-ray pulsar with transient X-ray activity, belonging to the new class of High Mass X-ray Binaries called Supergiant Fast X-ray Transients. This system is one of the two members of this class, together with IGR J11215-5952, wher
IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuS
IGR J11215-5952 is a hard X-ray transient source discovered in April 2005 with INTEGRAL and a confirmed member of the new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients (SFXTs). Archival INTEGRAL data and RXTE observations sh