ﻻ يوجد ملخص باللغة العربية
We report on the Swift observations of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, which has an orbital period of ~3.7 d. Our monitoring, for a total of ~43 ks, spans over three orbits and represents the most intense and complete sampling along the orbital period of the light curve of this source. If one assumes a circular orbit, the X-ray emission from this source can be explained by accretion from a spherically symmetric clumpy wind from a blue supergiant, composed of clumps with different masses, ranging from ~5x10^16 g to 10^21g.
We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (~3.7d and ~1250s, respectively). Our observations, for a total of ~43ks, span over three orb
We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our obs
IGR J18219-1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the BAT survey data up to March 2012 and the XRT data that include also an observing campaign performed in early 2012
IGR J18483-0311 is an X-ray pulsar with transient X-ray activity, belonging to the new class of High Mass X-ray Binaries called Supergiant Fast X-ray Transients. This system is one of the two members of this class, together with IGR J11215-5952, wher
IGR~J19149+1036 is a high mass X-ray binary detected by INTEGRAL in 2011 in the hard X-ray domain. We have analyzed the BAT survey data of the first 103 months of the Swift mission detecting this source at a significance level of ~30 standard deviati