ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift monitoring of IGR J16418-4532

141   0   0.0 ( 0 )
 نشر من قبل Paolo Esposito Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Esposito




اسأل ChatGPT حول البحث

We report on the Swift observations of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, which has an orbital period of ~3.7 d. Our monitoring, for a total of ~43 ks, spans over three orbits and represents the most intense and complete sampling along the orbital period of the light curve of this source. If one assumes a circular orbit, the X-ray emission from this source can be explained by accretion from a spherically symmetric clumpy wind from a blue supergiant, composed of clumps with different masses, ranging from ~5x10^16 g to 10^21g.



قيم البحث

اقرأ أيضاً

553 - P. Romano , V. Mangano 2011
We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (~3.7d and ~1250s, respectively). Our observations, for a total of ~43ks, span over three orb ital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from ~5E16 g to 1E21g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.
306 - L. Ducci 2013
We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our obs ervations, which cover 11 days for a total on-source exposure of about 24 ks, span 1.2 orbital periods (P_orb=8.4474 d) and are the first sensitive monitoring of this source in the soft X-rays. These new data allow us to exploit the timing variability properties of the sources in the field to unambiguously identify the soft X-ray counterpart of IGR J17354-3255. The soft X-ray light curve shows a moderate orbital modulation and a dip. We investigated the nature of the dip by comparing the X-ray light curve with the prediction of the Bondi-Hoyle-Lyttleton accretion theory, assuming both spherical and nonspherical symmetry of the outflow from the donor star. We found that the dip cannot be explained with the X-ray orbital modulation. We propose that an eclipse or the onset of a gated mechanism is the most likely explanation for the observed light curve.
IGR J18219-1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the BAT survey data up to March 2012 and the XRT data that include also an observing campaign performed in early 2012 . The source is detected at a significance level of ~14 standard deviations in the 88-month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of 72.46 days. The significance of this modulation is about 7 standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P_0 shows a sharp peak covering ~30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219-1347 binary system hosts a Be star. The broad band XRT+BAT spectrum is well modeled with a flat absorbed power law with a high energy exponential cutoff at ~11 keV.
231 - P. Romano , L. Ducci (3 2009
IGR J18483-0311 is an X-ray pulsar with transient X-ray activity, belonging to the new class of High Mass X-ray Binaries called Supergiant Fast X-ray Transients. This system is one of the two members of this class, together with IGR J11215-5952, wher e both the orbital (18.52d) and spin period (21s) are known. We report on the first complete monitoring of the X-ray activity along an entire orbital period of a Supergiant Fast X-ray Transient. These Swift observations, lasting 28d, cover more than one entire orbital phase consecutively. They are a unique data-set, which allows us to constrain the different mechanisms proposed to explain the nature of this new class of X-ray transients. We applied the new clumpy wind model for blue supergiants developed by Ducci et al. (2009), to the observed X-ray light curve. Assuming an eccentricity of e=0.4, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 10^{18}g to 5x 10^{21}g.
66 - G. Cusumano 2016
IGR~J19149+1036 is a high mass X-ray binary detected by INTEGRAL in 2011 in the hard X-ray domain. We have analyzed the BAT survey data of the first 103 months of the Swift mission detecting this source at a significance level of ~30 standard deviati ons. The timing analysis on the long term BAT light curve reveals the presence of a strong sinusoidal intensity modulation of 22.25+/- 0.05 d, that we interpret as the orbital period of this binary system. A broad band (0.3-150 keV) spectral analysis was performed combining the BAT spectrum and the XRT spectra from the pointed follow up observations. The spectrum is adequately modeled with an absorbed power law with a high energy cutoff at ~24 keV and an absorption cyclotron feature at ~31 keV. Correcting for the gravitational redshift, the inferred magnetic field at the neutron star surface is B_surf ~ 3.6 x 10^12 gauss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا