ﻻ يوجد ملخص باللغة العربية
We study the content in S-bearing molecules of protoplanetary disks around low-mass stars. We used the new IRAM 30-m receiver EMIR to perform simultaneous observations of the $1_{10}-1_{01}$ line of H$_2$S at 168.8 GHz and $2_{23}-1_{12}$ line of SO at 99.3 GHz. We compared the observational results with predictions coming from the astrochemical code NAUTILUS, which has been adapted to protoplanetary disks. The data were analyzed together with existing CS J=3-2 observations. We fail to detect the SO and H$_2$S lines, although CS is detected in LkCa15, DM,Tau, and GO,Tau but not in MWC,480. However, our new upper limits are significantly better than previous ones and allow us to put some interesting constraints on the sulfur chemistry. Our best modeling of disks is obtained for a C/O ratio of 1.2, starting from initial cloud conditions of H density of $2times 10^5$ cm$^{-3}$ and age of $10^6$ yr. The results agree with the CS data and are compatible with the SO upper limits, but fail to reproduce the H$_2$S upper limits. The predicted H$_2$S column densities are too high by at least one order of magnitude. H$_2$S may remain locked onto grain surfaces and react with other species, thereby preventing the desorption of H$_2$S.
Context. Several sulfur-bearing molecules are observed in the interstellar medium and in comets, in strong contrast to protoplanetary disks where only CS, H$_2$CS and SO have been detected so far. Aims. We combine observations and chemical models to
Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM
We present resolved Plateau de Bure Array observations of DM Tau in lines of HCO+ (3-2), (1-0) and DCO+ (3-2). A power-law fitting approach allowed a derivation of column densities of these two molecules. A chemical inner hole of ~50 AU was found in
Aims: To constrain the ionization fraction in protoplanetary disks, we present new high-sensitivity interferometric observations of N$_2$H$^+$ in three disks surrounding DM Tau, LkCa 15, and MWC 480. Methods: We used the IRAM PdBI array to observe th
(Abridged) We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RYTau and DGTau at wavelengths of 1.3mm and 2.8mm. The angular resolution of the maps is as high as 0.15arcsec, or 20AU at the d