ترغب بنشر مسار تعليمي؟ اضغط هنا

CID: Chemistry In Disks VII. First detection of HC3N in protoplanetary disks

140   0   0.0 ( 0 )
 نشر من قبل Edwige Chapillon
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S and SO).



قيم البحث

اقرأ أيضاً

We study the content in S-bearing molecules of protoplanetary disks around low-mass stars. We used the new IRAM 30-m receiver EMIR to perform simultaneous observations of the $1_{10}-1_{01}$ line of H$_2$S at 168.8 GHz and $2_{23}-1_{12}$ line of SO at 99.3 GHz. We compared the observational results with predictions coming from the astrochemical code NAUTILUS, which has been adapted to protoplanetary disks. The data were analyzed together with existing CS J=3-2 observations. We fail to detect the SO and H$_2$S lines, although CS is detected in LkCa15, DM,Tau, and GO,Tau but not in MWC,480. However, our new upper limits are significantly better than previous ones and allow us to put some interesting constraints on the sulfur chemistry. Our best modeling of disks is obtained for a C/O ratio of 1.2, starting from initial cloud conditions of H density of $2times 10^5$ cm$^{-3}$ and age of $10^6$ yr. The results agree with the CS data and are compatible with the SO upper limits, but fail to reproduce the H$_2$S upper limits. The predicted H$_2$S column densities are too high by at least one order of magnitude. H$_2$S may remain locked onto grain surfaces and react with other species, thereby preventing the desorption of H$_2$S.
The volatile composition of a planet is determined by the inventory of gas and ice in the parent disk. The volatile chemistry in the disk is expected to evolve over time, though this evolution is poorly constrained observationally. We present ALMA ob servations of C18O, C2H, and the isotopologues H13CN, HC15N, and DCN towards five Class 0/I disk candidates. Combined with a sample of fourteen Class II disks presented in Bergner et al. (2019b), this data set offers a view of volatile chemical evolution over the disk lifetime. Our estimates of C18O abundances are consistent with a rapid depletion of CO in the first ~0.5-1 Myr of the disk lifetime. We do not see evidence that C2H and HCN formation are enhanced by CO depletion, possibly because the gas is already quite under-abundant in CO. Further CO depletion may actually hinder their production by limiting the gas-phase carbon supply. The embedded sources show several chemical differences compared to the Class II stage, which seem to arise from shielding of radiation by the envelope (impacting C2H formation and HC15N fractionation) and sublimation of ices from infalling material (impacting HCN and C18O abundances). Such chemical differences between Class 0/I and Class II sources may affect the volatile composition of planet-forming material at different stages in the disk lifetime.
The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH 3CN and HC3N towards the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected towards all disks except IM Lup, and CH3CN is detected towards V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29-73K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 AU of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions.
The dominant reservoirs of elemental nitrogen in protoplanetary disks have not yet been observationally identified. Likely candidates are HCN, NH$_3$ and N$_2$. The relative abundances of these carriers determine the composition of planetesimals as a function of disk radius due to strong differences in their volatility. A significant sequestration of nitrogen in carriers less volatile than N$_2$ is likely required to deliver even small amounts of nitrogen to the Earth and potentially habitable exo-planets. While HCN has been detected in small amounts in inner disks ($<10$ au), so far only relatively insensitive upper limits on inner disk NH$_3$ have been obtained. We present new Gemini-TEXES high resolution spectroscopy of the 10.75 $mu$m band of warm NH$_3$, and use 2-dimensional radiative transfer modeling to improve previous upper limits by an order of magnitude to $rm [NH_3/H_{nuc}]<10^{-7}$ at 1 au. These NH$_3$ abundances are significantly lower than those typical for ices in circumstellar envelopes ($[{rm NH_3/H_{nuc}}]sim 3times 10^{-6}$). We also consistently retrieve the inner disk HCN gas abundances using archival Spitzer spectra, and derive upper limits on the HCN ice abundance in protostellar envelopes using archival ground-based 4.7 $mu$m spectroscopy ([HCN$_{rm ice}$]/[H$_2$O$_{rm ice}$]$<1.5-9$%). We identify the NH$_3$/HCN ratio as an indicator of chemical evolution in the disk, and use this ratio to suggest that inner disk nitrogen is efficiently converted from NH$_3$ to N$_2$, significantly increasing the volatility of nitrogen in planet-forming regions.
105 - Ruud Visser 2018
Aims: The two stable isotopes of nitrogen, 14N and 15N, exhibit a range of abundance ratios both inside and outside the solar system. The elemental ratio in the solar neighborhood is 440. Recent ALMA observations showed HCN/HC15N ratios from 83 to 15 6 in six T Tauri and Herbig disks and a CN/C15 N ratio of 323 +/- 30 in one T Tauri star. We aim to determine the dominant mechanism responsible for these enhancements of 15N: low-temperature exchange reactions or isotope-selective photodissociation of N2. Methods: Using the thermochemical code DALI, we model the nitrogen isotope chemistry in circumstellar disks with a 2D axisymmetric geometry. Our chemical network is the first to include both fractionation mechanisms for nitrogen. The model produces abundance profiles and isotope ratios for several key N-bearing species. We study how these isotope ratios depend on various disk parameters. Results: The formation of CN and HCN is closely coupled to the vibrational excitation of H2 in the UV-irradiated surface layers of the disk. Isotope fractionation is completely dominated by isotope-selective photodissociation of N2. The column density ratio of HCN over HC15N in the disks inner 100 au does not depend strongly on the disk mass, the flaring angle or the stellar spectrum, but it is sensitive to the grain size distribution. For larger grains, self-shielding of N2 becomes more important relative to dust extinction, leading to stronger isotope fractionation. Between disk radii of ~50 and 200 au, the models predict HCN/HC15N and CN/C15N abundance ratios consistent with observations of disks and comets. The HCN/HC15N and CN/C15N column density ratios in the models are a factor of 2-3 higher than those inferred from the ALMA observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا