ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic expansions of Laplace integrals for quantum state tomography

103   0   0.0 ( 0 )
 نشر من قبل Pierre Rouchon
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace integrals. When this maximum is on the boundary of the integration domain, as it is the case when the MaxLike quantum state is not full rank, such expansions are not standard. We provide here such expansions, even when this maximum does not belong to the smooth part of the boundary, as it is the case when the rank deficiency exceeds two. These expansions provide, aside the MaxLike estimate of the quantum state, confidence intervals for any observable. They confirm the formula proposed and used without precise mathematical justifications by the authors in an article recently published in Physical Review A.



قيم البحث

اقرأ أيضاً

We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in thes e settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems. We consider three applications, to the resource theories of (I) optical nonclassicality, (II) entanglement, and (III) quantum thermodynamics. In cases (II) and (III), the employed monotones are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For case (I), we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous and strongly superadditive. Our technique then yields computable upper bounds on asymptotic transformation rates including those achievable under linear optical elements. We also prove a number of results which ensure the measured relative entropy of nonclassicality to be bounded on any physically meaningful state, and to be easily computable for some class of states of interest, e.g., Fock diagonal states. We conclude by applying our findings to the problem of cat state manipulation and noisy Fock state purification.
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.
The essence of the path integral method in quantum physics can be expressed in terms of two relations between unitary propagators, describing perturbations of the underlying system. They inherit the causal structure of the theory and its invariance p roperties under variations of the action. These relations determine a dynamical algebra of bounded operators which encodes all properties of the corresponding quantum theory. This novel approach is applied to non-relativistic particles, where quantum mechanics emerges from it. The method works also in interacting quantum field theories and sheds new light on the foundations of quantum physics.
Quantum walks subject to decoherence generically suffer the loss of their genuine quantum feature, a quadratically faster spreading compared to classical random walks. This intuitive statement has been verified analytically for certain models and is also supported by numerical studies of a variety of examples. In this paper we analyze the long-time behavior of a particular class of decoherent quantum walks, which, to the best of our knowledge, was only studied at the level of numerical simulations before. We consider a local coin operation which is randomly and independently chosen for each time step and each lattice site and prove that, under rather mild conditions, this leads to classical behavior: With the same scaling as needed for a classical diffusion the position distribution converges to a Gaussian, which is independent of the initial state. Our method is based on non-degenerate perturbation theory and yields an explicit expression for the covariance matrix of the asymptotic Gaussian in terms of the randomness parameters.
142 - Jean-Pierre Gazeau 2018
In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like point particle, motion on the line, smooth observables, wave function, and eve n going to infinity, without forgetting perplexing phrases like classical world versus quantum world.... On the other hand, when a mathematical model becomes really inoperative with regard to correct predictions, one is forced to replace it with a new one. It is precisely what happened with the emergence of quantum physics. Classical models were (progressively) superseded by quantum ones through quantization prescriptions. These procedures appear often as ad hoc recipes. In the present paper, well defined quantizations, based on integral calculus and Weyl-Heisenberg symmetry, are described in simple terms through one of the most basic examples of mechanics. Starting from (quasi-) probability distribution(s) on the Euclidean plane viewed as the phase space for the motion of a point particle on the line, i.e., its classical model, we will show how to build corresponding quantum model(s) and associated probabilities (e.g. Husimi) or quasi-probabilities (e.g. Wigner) distributions. We highlight the regularizing role of such procedures with the familiar example of the motion of a particle with a variable mass and submitted to a step potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا