ﻻ يوجد ملخص باللغة العربية
Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a three degrees of influence property, and we review statistical approaches we have used to characterize inter-personal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations.
Social contagion is the process in which people adopt a belief, idea, or practice from a neighbor and pass it along to someone else. For over 100 years, scholars of social contagion have almost exclusively made the same implicit assumption: that only
Degree distribution of nodes, especially a power law degree distribution, has been regarded as one of the most significant structural characteristics of social and information networks. Node degree, however, only discloses the first-order structure o
We introduce a new threshold model of social networks, in which the nodes influenced by their neighbours can adopt one out of several alternatives. We characterize social networks for which adoption of a product by the whole network is possible (resp
Peoples personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. circles on Google+, and list
We present a deterministic model for on-line social networks (OSNs) based on transitivity and local knowledge in social interactions. In the Iterated Local Transitivity (ILT) model, at each time-step and for every existing node $x$, a new node appear