ﻻ يوجد ملخص باللغة العربية
We construct explicit solutions for the linearized massive and massless spin-2, vector and scalar modes around the AdS spacetimes in diverse dimensions. These modes may arise in extended (super)gravities with higher curvature terms in general dimensions. Log modes in critical gravities can also be straightforwardly deduced. We analyze the properties of these modes and obtain the tachyon-free condition, which allows negative mass square for these modes. However, such modes may not satisfy the standard AdS boundary condition and can be truncated out from the spectrum.
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admits a single (A)dS vacuum. In this paper we construct two classes of exac
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and
We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light cone gauge. For the higher spin theory based on sl(3, R) plus sl(3,R) algeb
We study the behavior of quasinormal modes in a top-down holographic dual corresponding to a strongly coupled $mathcal{N} = 4$ super Yang-Mills plasma charged under a $U(1)$ subgroup of the global $SU(4)$ R-symmetry. In particular, we analyze the spe
In higher derivative theories, gravity can travel slower or faster than light. With this feature in mind, we revisit the construction of the causal and entanglement wedges in this type of theories, and argue that they must be constructed using the fa