ﻻ يوجد ملخص باللغة العربية
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admits a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order n in d=2n+1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.
We construct explicit solutions for the linearized massive and massless spin-2, vector and scalar modes around the AdS spacetimes in diverse dimensions. These modes may arise in extended (super)gravities with higher curvature terms in general dimensi
It has been shown that scalar fields can form gravitationally bound compact objects called boson stars. In this study, we analyze boson star configurations where the scalar fields contain a small amount of angular momentum and find two new classes of
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work, inspired by the teleparallel formulation of general relativity, we present its extension to Love
We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light cone gauge. For the higher spin theory based on sl(3, R) plus sl(3,R) algeb
We present a class of new black hole solutions in $D$-dimensional Lovelock gravity theory. The solutions have a form of direct product $mathcal{M}^m times mathcal{H}^{n}$, where $D=m+n$, $mathcal{H}^n$ is a negative constant curvature space, and are