ﻻ يوجد ملخص باللغة العربية
Here we report a theoretical model based on Greens functions and averaging techniques that gives ana- lytical estimates to the signal to noise ratio (SNR) near the first parametric instability zone in parametrically- driven oscillators in the presence of added ac drive and added thermal noise. The signal term is given by the response of the parametrically-driven oscillator to the added ac drive, while the noise term has two dif- ferent measures: one is dc and the other is ac. The dc measure of noise is given by a time-average of the statistically-averaged fluctuations of the position of the parametric oscillator due to thermal noise. The ac measure of noise is given by the amplitude of the statistically-averaged fluctuations at the frequency of the parametric pump. We observe a strong dependence of the SNR on the phase between the external drive and the parametric pump, for some range of the phase there is a high SNR, while for other values of phase the SNR remains flat or decreases with increasing pump amplitude. Very good agreement between analytical estimates and numerical results is achieved.
In this paper we report a theoretical model based on Green functions, Floquet theory and averaging techniques up to second order that describes the dynamics of parametrically-driven oscillators with added thermal noise. Quantitative estimates for hea
Exact quantum master equation for a driven Brownian oscillator system is constructed via a Wigner phase-space Gaussian wave packet approach. The interplay between external field and dissipation leads to this system an effective field correction that
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where
We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magne
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th