ﻻ يوجد ملخص باللغة العربية
We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle {theta}. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady state currents scale as 1/N^2 for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2{theta}/N.
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where
An analytic method is proposed to compute the surface energy and elementary excitations of the XXZ spin chain with generic non-diagonal boundary fields. For the gapped case, in some boundary parameter regimes the contributions of the two boundary fie
The ground state and thermodynamics of a generalized spin-1/2 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins are calculated exactly using the mapping method based on the decoration-iteration transformation. Ri
We present a generalization of Blochs theorem to finite-range lattice systems of independent fermions, in which translation symmetry is broken only by arbitrary boundary conditions, by providing exact, analytic expressions for all energy eigenvalues
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th