ﻻ يوجد ملخص باللغة العربية
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N=4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbols entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3-->3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.
We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar N=4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can
We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms
A recent, integrability-based conjecture in the framework of the Wilson loop OPE for N=4 SYM theory, predicts the leading OPE contribution for the hexagon MHV remainder function and NMHV ratio function to all loops, in integral form. We prove that th
As a test of the gluon scattering amplitude/Wilson loop duality, we evaluate the hexagonal light-like Wilson loop at two loops in N=4 super Yang-Mills theory. We compare its finite part to the Bern-Dixon-Smirnov (BDS) conjecture for the finite part o
Recently, the modular linear differential equation (MLDE) for level-two congruence subgroups $Gamma_theta, Gamma^{0}(2)$ and $Gamma_0(2)$ of $text{SL}_2(mathbb{Z})$ was developed and used to classify the fermionic rational conformal field theories (R