ﻻ يوجد ملخص باللغة العربية
We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms involving only one basic function, which is a simple linear combination of logarithms, dilogarithms, and trilogarithms of uniform degree three transcendentality. Our method uses differential equations to determine the symbol of the function, and an algorithm to reconstruct the latter from its symbol. It is known that six-dimensional hexagon integrals are closely related to scattering amplitudes in N=4 super Yang-Mills theory, and we therefore expect our result to be helpful for understanding the structure of scattering amplitudes in this theory, in particular at two loops.
We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $tildePhi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one-
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N=4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loo
We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar N=4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can
As a test of the gluon scattering amplitude/Wilson loop duality, we evaluate the hexagonal light-like Wilson loop at two loops in N=4 super Yang-Mills theory. We compare its finite part to the Bern-Dixon-Smirnov (BDS) conjecture for the finite part o
We evaluate the three-loop massive vacuum bubble diagrams in terms of polylogarithms up to weight six. We also construct the basis of irrational constants being harmonic polylgarithms of arguments $e^{k i pi/3}$.