ﻻ يوجد ملخص باللغة العربية
Using single-shot charge detection in a GaAs double quantum dot, we investigate spin relaxation time T_1 and readout visibility of a two-electron singlet-triplet qubit following single-electron dynamic nuclear polarization (DNP). For magnetic fields up to 2 T, the DNP cycle is in all cases found to increase Overhauser field gradients, which in turn decrease T_1 and consequently reduce readout visibility. This effect was previously attributed to a suppression of singlet-triplet dephasing under a similar DNP cycle. A model describing relaxation after singlet-triplet mixing agrees well with experiment. Effects of pulse bandwidth on visibility are also investigated.
We measure singlet-triplet mixing in a precision fabricated double donor dot comprising of 2 and 1 phosphorus atoms separated by $16{pm}1$ nm. We identify singlet and triplet-minus states by performing sequential independent spin readout of the two e
In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin block
We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxatio
We report implementation of a resonantly driven singlet-triplet spin qubit in silicon. The qubit is defined by the two-electron anti-parallel spin states and universal quantum control is provided through a resonant drive of the exchange interaction a
Charge noise is the main hurdle preventing high-fidelity operation, in particular that of two-qubit gates, of semiconductor-quantum-dot-based spin qubits. While certain sweet spots where charge noise is substantially suppressed have been demonstrated