ﻻ يوجد ملخص باللغة العربية
We show that a method presented in [S.L. Trubatch and A. Franco, Canonical Procedures for Population Dynamics, J. Theor. Biol. 48 (1974), 299-324] and later in [G.H. Paine, The development of Lagrangians for biological models, Bull. Math. Biol. 44 (1982) 749-760] for finding Lagrangians of classic models in biology, is actually based on finding the Jacobi Last Multiplier of such models. Using known properties of Jacobi Last Multiplier we show how to obtain linear Lagrangians of those first-order systems and nonlinear Lagrangian of the corresponding single second-order equations that can be derived from them, even in the case where those authors failed such as the host-parasite model.
We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobis method by applying it to several equations and
We give a proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally $C^{2}$ and locally $C^{3}$ function. The proof is based on the determinant formulas for correlation functions in terms of polyn
In this paper, we explore the stability of the energy landscape of an Ising Hamiltonian when subjected to two kinds of perturbations: a perturbation on the coupling coefficients and external fields, and a perturbation on the underlying graph structur
Using the results on the $1/n$-expansion of the Verblunsky coefficients for a class of polynomials orthogonal on the unit circle with $n$ varying weight, we prove that the local eigenvalue statistic for unitary matrix models is independent of the for
We consider atomistic geometry relaxation in the context of linear tight binding models for point defects. A limiting model as Fermi-temperature is sent to zero is formulated, and an exponential rate of convergence for the nuclei configuration is est