ﻻ يوجد ملخص باللغة العربية
NRAO 530 is an optically violent variable source and has been studied with multi-epoch multi-frequency high-resolution VLBI observations. NRAO 530 was monitored with the VLBA at three frequencies (22, 43 and 86 GHz) on 10 consecutive days in 2007 May during observations of the Galactic Center (Sgr A*). Furthermore, analysis of archival data of NRAO 530 at 15 GHz over the last ten years allows us to study its detailed jet kinematics. We identified the compact component located at the southern-end of the jet as the VLBI core, consistent with previous studies. The 10-d monitoring data at the 3 high frequencies were shown to produce high quality and self-consistent measurements of the component positions, from which we detected for the first time a two-dimensional frequency-dependent position shift. In addition, the repeated measurements also permit us to investigate the interday flux density and structure variability of NRAO 530. We find that it is more variable for the inner jet components than those further out. We obtained apparent velocities for eight jet components with $beta_{rm app} ranging from 2 to 26 c. Accordingly, we estimated physical jet parameters with the minimum Lorentz factor of 14 and Doppler factors in the range of 14--28 (component f). The changes in the morphology of NRAO 530 were related to the motion of separate jet components with the most pronounced changes occurring in the regions close to the core. For NRAO 530, we estimated a P.A. swing of $3^{circ}.4$ per year for the entire inner jet (components d and e). The non-ballistic motion and change of jet orientation makes this source another prominent example of a helical and possibly `swinging jet.
Space very long baseline interferometry (VLBI) has unique applications in high-resolution imaging of fine structure of astronomical objects and high-precision astrometry due to the key long space-Earth or space-space baselines beyond the Earths diame
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these
Very Long Baseline Interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on Active Galactic Nuclei, the number of observations con
Extension of very long baseline interferometry (VLBI) to observing wavelengths shorter than 1.3mm provides exceptional angular resolution (~20 micro arcsec) and access to new spectral regimes for the study of astrophysical phenomena. To maintain phas
The African Very Long Baseline Interferometry Network (AVN) is a pan-African project that will develop Very Long Baseline Interferometry (VLBI) observing capability in several countries across the African continent, either by conversion of existing t