ﻻ يوجد ملخص باللغة العربية
Very Long Baseline Interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on Active Galactic Nuclei, the number of observations concerned with other astronomical objects such as stars and masers, and with astrometric applications, is significant. In the last decade, much progress has been made in all of these fields. We give a brief introduction into the technique of radio interferometry, focussing on the particularities of VLBI observations, and review recent results which would not have been possible without VLBI observations.
NRAO 530 is an optically violent variable source and has been studied with multi-epoch multi-frequency high-resolution VLBI observations. NRAO 530 was monitored with the VLBA at three frequencies (22, 43 and 86 GHz) on 10 consecutive days in 2007 May
Space very long baseline interferometry (VLBI) has unique applications in high-resolution imaging of fine structure of astronomical objects and high-precision astrometry due to the key long space-Earth or space-space baselines beyond the Earths diame
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these
We report on the design, construction, and characterization of a 10 m-long high-performance magnetic shield for Very Long Baseline Atom Interferometry (VLBAI). We achieve residual fields below 4 nT and longitudinal inhomogeneities below 2.5 nT/m over
We conducted a high-sensitivity radio detection survey for forty narrow-line Seyfert 1 (NLS1) galaxies using very-long-baseline interferometry (VLBI) at 22 GHz through phase-referencing long-time integration and using a newly developing recorder with