ترغب بنشر مسار تعليمي؟ اضغط هنا

SPIDER - V. Measuring Systematic Effects in Early-Type Galaxy Stellar Masses from Photometric SED Fitting

225   0   0.0 ( 0 )
 نشر من قبل Ryan Swindle
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of 40,000 galaxies from the Sloan Digital Sky Survey, of which 5,000 are also in the UKIRT Infrared Deep Sky Survey, with spectroscopic redshifts in the range 0.05 leq z leq 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A) are also computed from fits to SDSS spectra using various population models. These constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the IMF and extinction law yielding systematic biases on the mass of nearly a factor of 2, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only 0.06 dex, adding uncertainties of 0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of 0.15 dex. Finally, we find that stellar masses are less affected by absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by 0.15 dex, with errors of 0.02 dex at the 95% CL for the median stellar age subsample.



قيم البحث

اقرأ أيضاً

A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than isolated systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than isolated centrals, mainly because of gas-rich interactions with their companion galaxies.
105 - A. Dominguez 2010
The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1-1000 microns has never been determined di rectly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frame K-band galaxy luminosity function up to redshift 4 (Cirasuolo et al. 2010), combined with a determination of galaxy SED-type fractions. These are based on fitting SWIRE templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and AGN galaxies in that redshift range are estimated, and two alternative extrapolations of SED-types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the UV to the IR, the evolving star formation rate density of the universe, the evolving contribution to the bolometric EBL from the different galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, from another observationally-based model and observational data. The EBL uncertainties in our modeling based directly on the data are quantified, and their consequences for attenuation of very high energy gamma-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from infrared and gamma-ray astronomy are needed in order to reduce the uncertainties in the far-IR.
100 - A. Dominguez 2011
The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy. However, the overall spectrum of the EBL between 0.1 and 1000 microns has never been dete rmined directly neither from observed luminosity functions (LFs), over a wide redshift range, nor from any multiwavelength observation of galaxy spectral energy distributions (SEDs). The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and active galactic nucleus (AGN) galaxies from redshift 0.2 to 1 are estimated, and two alternative extrapolations of SED types to higher redshifts are considered. This allows calculation of the evolving EBL. The EBL uncertainties in our modelling based directly on the data are quantified, and their consequences for attenuation of very-high-energy gamma-rays due to pair production on the EBL are discussed. It is concluded that the EBL seems well constrained from the UV to the mid-IR at an intensity level roughly matching galaxy count data. Independent efforts from IR and gamma-ray astronomy are needed in order to reduce the uncertainties in the far-IR.
We perform a spectroscopic study to constrain the stellar Initial Mass Function (IMF) by using a large sample of 24,781 early-type galaxies from the SDSS-based SPIDER survey. Clear evidence is found of a trend between IMF and central velocity dispers ion, sigma0, evolving from a standard Kroupa/Chabrier IMF at 100km/s towards a more bottom-heavy IMF with increasing sigma0, becoming steeper than the Salpeter function at sigma0>220km/s. We analyze a variety of spectral indices, corrected to solar scale by means of semi-empirical correlations, and fitted simultaneously with extended MILES (MIUSCAT) stellar population models. Our analysis suggests that sigma0, rather than [alpha/Fe], drives the IMF variation. Although our analysis cannot discriminate between a single power-law (unimodal) and a low-mass (<0.5MSun) tapered (bimodal) IMF, we can robustly constrain the fraction in low-mass stars at birth, that is found to increase from 20% at sigma0~100km/s, up to 80% at sigma0~300km/s. Additional constraints can be provided with stellar mass-to-light (M/L) ratios: unimodal models predict M/L significantly larger than dynamical M/L, across the whole sigma0 range, whereas a bimodal IMF is compatible. Our results are robust against individual abundance variations. No significant variation is found in Na and Ca in addition to the expected change from the correlation between [alpha/Fe] and sigma0. [Abridged]
We present GalMC (Acquaviva et al 2011), our publicly available Markov Chain Monte Carlo algorithm for SED fitting, show the results obtained for a stacked sample of Lyman Alpha Emitting galaxies at z ~ 3, and discuss the dependence of the inferred S ED parameters on the assumptions made in modeling the stellar populations. We also introduce SpeedyMC, a version of GalMC based on interpolation of pre-computed template libraries. While the flexibility and number of SED fitting parameters is reduced with respect to GalMC, the average running time decreases by a factor of 20,000, enabling SED fitting of each galaxy in about one second on a 2.2GHz MacBook Pro laptop, and making SpeedyMC the ideal instrument to analyze data from large photometric galaxy surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا