ﻻ يوجد ملخص باللغة العربية
The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy. However, the overall spectrum of the EBL between 0.1 and 1000 microns has never been determined directly neither from observed luminosity functions (LFs), over a wide redshift range, nor from any multiwavelength observation of galaxy spectral energy distributions (SEDs). The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and active galactic nucleus (AGN) galaxies from redshift 0.2 to 1 are estimated, and two alternative extrapolations of SED types to higher redshifts are considered. This allows calculation of the evolving EBL. The EBL uncertainties in our modelling based directly on the data are quantified, and their consequences for attenuation of very-high-energy gamma-rays due to pair production on the EBL are discussed. It is concluded that the EBL seems well constrained from the UV to the mid-IR at an intensity level roughly matching galaxy count data. Independent efforts from IR and gamma-ray astronomy are needed in order to reduce the uncertainties in the far-IR.
The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1-1000 microns has never been determined di
This review covers the measurements related to the extragalactic background light (EBL) intensity from gamma-rays to radio in the electromagnetic spectrum over 20 decades in the wavelength. The cosmic microwave background (CMB) remains the best measu
The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I co
The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate wel
Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observ