ﻻ يوجد ملخص باللغة العربية
We present VLT/UVES spectroscopy of the quasar Q0841+129, whose spectrum shows a proximate damped Lyman-alpha (PDLA) absorber at z=2.47621 and a proximate sub-DLA at z=2.50620, both lying close in redshift to the QSO itself at z_em=2.49510+/-0.00003. This fortuitous arrangement, with the sub-DLA acting as a filter that hardens the QSOs ionizing radiation field, allows us to model the ionization level in the foreground PDLA, and provides an interesting case-study on the origin of the high-ion absorption lines Si IV, C IV, and O VI in DLAs. The high ions in the PDLA show at least five components spanning a total velocity extent of ~160 km/s, whereas the low ions exist predominantly in a single component spanning just 30 km/s. We examine various models for the origin of the high ions. Both photoionization and turbulent mixing layer models are fairly successful at reproducing the observed ionic ratios after correcting for the non-solar relative abundance pattern, though neither model can explain all five components. We show that the turbulent mixing layer model, in which the high ions trace the interfaces between the cool PDLA gas and a hotter phase of shock-heated plasma, can explain the average high-ion ratios measured in a larger sample of 12 DLAs.
We present a new ultra-violet spectrum of the QSO 0013-004 with 0.9 AA resolution obtained with the MMT Blue spectrograph. The upsilon = 0 - 0, 1 - 0, 2 - 0 and 3 - 0 Lyman bands of H_2 associated with the z = 1.9731 damped Ly alpah absorption line s
We report on the discovery of a bright Lyman alpha blob associated with the z=3 quasar SDSSJ124020.91+145535.6 which is also coincident with strong damped Lyman alpha absorption from a foreground galaxy (a so-called proximate damped Lyman alpha syste
We report the discovery and analysis of the most metal-poor damped Lyman-alpha (DLA) system currently known, based on observations made with the Keck HIRES spectrograph. The metal paucity of this system has only permitted the determination of three e
We have used the Very Long Baseline Array to image 18 quasars with foreground damped Lyman-$alpha$ systems (DLAs) at 327, 610 or 1420 MHz, to measure the covering factor $f$ of each DLA at or near its redshifted HI 21cm line frequency. Including six
We report results from a programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-$alpha$ absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies to measure the low-f